• Abatzoglou, J. T., , and G. Magnusdottir, 2004: Nonlinear planetary wave reflection in the troposphere. Geophys. Res. Lett., 31, L09101, doi:10.1029/2004GL019495.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., , and G. Magnusdottir, 2006a: Opposing effects of reflective and nonreflective planetary wave breaking on the NAO. J. Atmos. Sci., 63, 34483457, doi:10.1175/JAS3809.1.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., , and G. Magnusdottir, 2006b: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19, 61396152, doi:10.1175/JCLI3968.1.

    • Search Google Scholar
    • Export Citation
  • Abe-Ouchi, A., and et al. , 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, doi:10.5194/gmd-8-3621-2015.

    • Search Google Scholar
    • Export Citation
  • Andersen, K. K., and et al. , 2004: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151, doi:10.1038/nature02805.

    • Search Google Scholar
    • Export Citation
  • Andrews, D., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, doi:10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Beghin, P., , S. Charbit, , M. Kageyama, , N. Combourieu-Nebout, , C. Hatté, , C. Dumas, , and J.-Y. Peterschmitt, 2015: What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Climate Dyn., 46, 26112631, doi:10.1007/s00382-015-2720-0.

    • Search Google Scholar
    • Export Citation
  • Bradwell, T., and et al. , 2008: The northern sector of the last British ice sheet: Maximum extent and demise. Earth-Sci. Rev., 88, 207226, doi:10.1016/j.earscirev.2008.01.008.

    • Search Google Scholar
    • Export Citation
  • Brady, E. C., , B. L. Otto-Bliesner, , J. E. Kay, , and N. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 19011925, doi:10.1175/JCLI-D-11-00416.1.

    • Search Google Scholar
    • Export Citation
  • Brandefelt, J., , and B. L. Otto-Bliesner, 2009: Equilibration and variability in a Last Glacial Maximum climate simulation with CCSM3. Geophys. Res. Lett., 36, L19712, doi:10.1029/2009GL040364.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., , and P. Haynes, 1996: Low-latitude reflection of Rossby wave trains. J. Atmos. Sci., 53, 482496, doi:10.1175/1520-0469(1996)053<0482:LLRORW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CLIMAP, 1976: The surface of the Ice-Age Earth. Science, 191, 11311137, doi:10.1126/science.191.4232.1131.

  • Collins, W. D., and et al. , 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN464-STR, 226 pp.

  • Collins, W. D., and et al. , 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., , and I. M. Held, 1992: The stationary response to large-scale orography in a general circulation model and a linear model. J. Atmos. Sci., 49, 525539, doi:10.1175/1520-0469(1992)049<0525:TSRTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., 2009: Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr., 39, 234247, doi:10.1175/2008JPO3897.1.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Vernal, A., and et al. , 2005: Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. Quat. Sci. Rev., 24, 897924, doi:10.1016/j.quascirev.2004.06.014.

    • Search Google Scholar
    • Export Citation
  • De Vernal, A., , A. Rosell-Melé, , M. Kucera, , C. Hillaire-Marcel, , F. Eynaud, , M. Weinelt, , T. Dokken, , and M. Kageyama, 2006: Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic. Quat. Sci. Rev., 25, 28202834, doi:10.1016/j.quascirev.2006.06.006.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., , M. S. Kristensen, , and K. K. Andersen, 2005: The recurrence time of Dansgaard–Oeschger events and limits on the possible periodic component. J. Climate, 18, 25942603, doi:10.1175/JCLI3437.1.

    • Search Google Scholar
    • Export Citation
  • Dokken, T. M., , K. H. Nisancioglu, , C. Li, , D. S. Battisti, , and C. Kissel, 2013: Dansgaard–Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic Seas. Paleoceanography, 28, 491502, doi:10.1002/palo.20042.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and P. J. Valdes, 2000: Climates at the last glacial maximum: Influence of model horizontal resolution. J. Climate, 13, 15541573, doi:10.1175/1520-0442(2000)013<1554:CATLGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., , and D. S. Battisti, 2009: Causes of reduced North Atlantic storm activity in a CAM3 simulation of the Last Glacial Maximum. J. Climate, 22, 47934808, doi:10.1175/2009JCLI2776.1.

    • Search Google Scholar
    • Export Citation
  • Drouard, M., , G. Riviere, , and P. Arbogast, 2013: The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeastern Pacific. J. Atmos. Sci., 70, 28542874, doi:10.1175/JAS-D-12-0351.1.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , C. M. Bitz, , and E. Tziperman, 2009: Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography, 24, PA4209, doi:10.1029/2009PA001778.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., , and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–167.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Ting, , and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., , and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 15151518, doi:10.1029/1999GL011274.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and et al. , 2006: Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: A comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quat. Sci. Rev., 25, 20822102, doi:10.1016/j.quascirev.2006.02.010.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and et al. , 2013: Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model—Part I: Comparing IPSL_CM5A to IPSL_CM4. Climate Dyn., 40, 24472468, doi:10.1007/s00382-012-1488-8.

    • Search Google Scholar
    • Export Citation
  • Kleman, J., , J. Fastook, , K. Ebert, , J. Nilsson, , and R. Caballero, 2013: Pre-LGM Northern Hemisphere ice sheet topography. Climate Past, 9, 23652378, doi:10.5194/cp-9-2365-2013.

    • Search Google Scholar
    • Export Citation
  • Kucera, M., , A. Rosell-Melé, , R. Schneider, , C. Waelbroeck, , and M. Weinelt, 2005a: Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO). Quat. Sci. Rev., 24, 813819, doi:10.1016/j.quascirev.2004.07.017.

    • Search Google Scholar
    • Export Citation
  • Kucera, M., and et al. , 2005b: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev., 24, 951998, doi:10.1016/j.quascirev.2004.07.014.

    • Search Google Scholar
    • Export Citation
  • Laine, A., and et al. , 2009: Northern Hemisphere storm tracks during the Last Glacial Maximum in the PMIP2 ocean–atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, doi:10.1007/s00382-008-0391-9.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and D. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, doi:10.1175/2007JCLI2166.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., , D. Battisti, , and C. M. Bitz, 2010: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Climate, 23, 54575475, doi:10.1175/2010JCLI3409.1.

    • Search Google Scholar
    • Export Citation
  • Löfverström, M., 2014: On the interaction between ice sheets and the large-scale atmospheric circulation over the last glacial cycle. Ph.D. thesis, Stockholm University, 49 pp.

  • Löfverström, M., , R. Caballero, , J. Nilsson, , and J. Kleman, 2014: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle. Climate Past, 10, 14531471, doi:10.5194/cp-10-1453-2014.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., , and P. H. Haynes, 1999: Reflection of planetary waves in three-dimensional tropospheric flows. J. Atmos. Sci., 56, 652670, doi:10.1175/1520-0469(1999)056<0652:ROPWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MARGO, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, doi:10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • Masato, G., , B. Hoskins, , and T. J. Woollings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, doi:10.1002/qj.990.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • Merz, N., , C. C. Raible, , and T. Woollings, 2015: North Atlantic eddy-driven jet in interglacial and glacial winter climates. J. Climate, 28, 39773997, doi:10.1175/JCLI-D-14-00525.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., , P. L. Langen, , D. Ferreira, , and J. Marshall, 2013: Ocean basin geometry and the salinification of the Atlantic Ocean. J. Climate, 26, 61636184, doi:10.1175/JCLI-D-12-00358.1.

    • Search Google Scholar
    • Export Citation
  • Oster, J. L., , D. E. Ibarra, , M. J. Winnickand, , and K. Maher, 2015: Steering of westerly storms over western North America at the Last Glacial Maximum. Nat. Geosci., 8, 201205, doi:10.1038/ngeo2365.

    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., , and M. Löfverström, 2015: On the enigmatic similarity in Greenland δ18O between the Oldest and Younger Dryas. Geophys. Res. Lett., 42, 10 47010 477, doi:10.1002/2015GL066042.

    • Search Google Scholar
    • Export Citation
  • Peltier, W., 2004: Global glacial isostasy and the surface of the Ice-Age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, doi:10.1146/annurev.earth.32.082503.144359.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , R. Scott, , and S. Thomas, 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev., 132, 25392552, doi:10.1175/MWR2788.1.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., , and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, doi:10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., , and K. H. Cook, 1997: Factors controlling nonlinearity in mechanically forced stationary waves over orography. J. Atmos. Sci., 54, 26122629, doi:10.1175/1520-0469(1997)054<2612:FCNIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., , and K. H. Cook, 1999: Understanding the seasonality of orographically forced stationary waves: Interaction between mechanical and thermal forcing. J. Atmos. Sci., 56, 11541174, doi:10.1175/1520-0469(1999)056<1154:UTSOOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , A. Laîné, , G. Lapeyre, , D. Salas-Mélia, , and M. Kageyama, 2010: Links between Rossby wave breaking and the North Atlantic Oscillation–Arctic Oscillation in present-day and Last Glacial Maximum climate simulations. J. Climate, 23, 29873008, doi:10.1175/2010JCLI3372.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and D. S. Battisti, 2007: Challenges to our understanding of the general circulation: Abrupt climate change. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 331–371.

  • Svendsen, J. I., and et al. , 2004: Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev., 23, 12291271, doi:10.1016/j.quascirev.2003.12.008.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., , B. Hoskins, , and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Ullman, D., , A. LeGrande, , A. Carlson, , F. Anslow, , and J. Licciardi, 2014: Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate Past, 10, 487507, doi:10.5194/cp-10-487-2014.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., , and G. Magnusdottir, 2003: Nonlinear planetary wave reflection in an atmospheric GCM. J. Atmos. Sci., 60, 279286, doi:10.1175/1520-0469(2003)060<0279:NPWRIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , and P. J. Kushner, 2010: Interpreting stationary wave nonlinearity in barotropic dynamics. J. Atmos. Sci., 67, 22402250, doi:10.1175/2010JAS3332.1.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327347, doi:10.1357/002224083788520207.

  • Waugh, D., , R. Plumb, , and L. M. Polvani, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a tropical surf zone and its effect on interhemispheric propagation. J. Atmos. Sci., 51, 14011416, doi:10.1175/1520-0469(1994)051<1401:NBRTAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weber, S., and et al. , 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, doi:10.5194/cp-3-51-2007.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , G. Lohmann, , G. Knorr, , and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 21
PDF Downloads 75 75 19

Stationary Wave Reflection as a Mechanism for Zonalizing the Atlantic Winter Jet at the LGM

View More View Less
  • 1 Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
© Get Permissions
Restricted access

Abstract

Current estimates of the height of the Laurentide Ice Sheet (LIS) at the Last Glacial Maximum (LGM) range from around 3000 to 4500 m. Modeling studies of the LGM, using low-end estimates of the LIS height, show a relatively weak and northeastward-tilted winter jet in the North Atlantic, similar to the modern jet, while simulations with high-end LIS elevations show a much more intense and zonally oriented jet. Here, an explanation for this response of the Atlantic circulation is sought using a sequence of LGM simulations spanning a broad range of LIS elevations. It is found that increasing LIS height favors planetary wave breaking and nonlinear reflection in the subtropical North Atlantic. For high LIS elevations, planetary wave reflection becomes sufficiently prevalent that a poleward-directed flux of wave activity appears in the climatology over the midlatitude North Atlantic. This entails a zonalization of the stationary wave phase lines and thus of the midlatitude jet.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Marcus Löfverström, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: marcusl@ucar.edu

Abstract

Current estimates of the height of the Laurentide Ice Sheet (LIS) at the Last Glacial Maximum (LGM) range from around 3000 to 4500 m. Modeling studies of the LGM, using low-end estimates of the LIS height, show a relatively weak and northeastward-tilted winter jet in the North Atlantic, similar to the modern jet, while simulations with high-end LIS elevations show a much more intense and zonally oriented jet. Here, an explanation for this response of the Atlantic circulation is sought using a sequence of LGM simulations spanning a broad range of LIS elevations. It is found that increasing LIS height favors planetary wave breaking and nonlinear reflection in the subtropical North Atlantic. For high LIS elevations, planetary wave reflection becomes sufficiently prevalent that a poleward-directed flux of wave activity appears in the climatology over the midlatitude North Atlantic. This entails a zonalization of the stationary wave phase lines and thus of the midlatitude jet.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Marcus Löfverström, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: marcusl@ucar.edu
Save