• Allen, M. R., , and L. A. Smith, 1996: Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Climate, 9, 33733404, doi:10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , and N.-C. Lau, 1980: Regional characteristics of the Northern Hemisphere wintertime circulation: A comparison of the simulation of a GFDL general circulation model with observations. J. Atmos. Sci., 37, 497514, doi:10.1175/1520-0469(1980)037<0497:RCOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , Y. Lee, , and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, S., , J. Kurths, , G. Osipov, , D. L. Valladares, , and C. S. Zhou, 2002: The synchronization of chaotic systems. Phys. Rep., 366, 12, doi:10.1016/S0370-1573(02)00137-0.

    • Search Google Scholar
    • Export Citation
  • Brachet, S., , F. Codron, , Y. Feliks, , M. Ghil, , H. Le Treut, , and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853, doi:10.1175/JCLI-D-11-00329.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, doi:10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., , C. Schwierz, , and H. C. Davies, 2007: Atmospheric blocking: Space-time links to the NAO and PNA. Climate Dyn., 29, 713725, doi:10.1007/s00382-007-0259-4.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H., , and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., 1990: Isolated vortex evolution in 2 and 4 mode models. Deep-Sea Res., 37A, 571591, doi:10.1016/0198-0149(90)90091-9.

  • Feliks, Y., , M. Ghil, , and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961981, doi:10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., , M. Ghil, , and E. Simonnet, 2007: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 64, 97116, doi:10.1175/JAS3780.1.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., , M. Ghil, , and A. W. Robertson, 2010: Oscillatory climate modes in the eastern Mediterranean and their synchronization with the North Atlantic Oscillation. J. Climate, 23, 40604079, doi:10.1175/2010JCLI3181.1.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., , M. Ghil, , and A. W. Robertson, 2011: The atmospheric circulation over the North Atlantic as induced by the SST field. J. Climate, 24, 522542, doi:10.1175/2010JCLI3859.1.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., , A. Groth, , A. W. Robertson, , and M. Ghil, 2013: Oscillatory climate modes in the Indian monsoon, North Atlantic, and tropical Pacific. J. Climate, 26, 95289544, doi:10.1175/JCLI-D-13-00105.1.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381, doi:10.1016/0377-0265(78)90002-7.

    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., , A. W. Robertson, , P. Smyth, , S. J. Camargo, , and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, doi:10.1007/s00382-007-0235-z.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 66, 332352, doi:10.1175/2008JAS2682.1.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and A. W. Robertson, 2002: “Waves” vs. “particles” in the atmosphere’s phase space: A pathway to long-range forecasting? Proc. Natl. Acad. Sci. USA, 99 (Supp.) 24932500, doi:10.1073/pnas.012580899.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and et al. , 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 141, doi:10.1029/2000RG000092.

  • Gray, B., , and R. Madden, 1986: Aliasing in time-averaged tropical pressure data. Mon. Wea. Rev., 114, 1618, doi:10.1175/1520-0493(1986)114<1618:AITATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groth, A., , and M. Ghil, 2011: Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev., 84E, 036206, doi:10.1103/PhysRevE.84.036206.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., 1981: Stability properties of an arbitrarily oriented mean flow. Tellus, 33, 188200, doi:10.1111/j.2153-3490.1981.tb01743.x.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., , A. Robinson, , and E. Schulman, 1980: The accuracy, efficiency, and stability of three numerical models with application to open ocean problems. J. Comput. Phys., 34, 153, doi:10.1016/0021-9991(80)90111-4.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical atmosphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Hilmer, M., , and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989992, doi:10.1029/1999GL010944.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 552 pp.

  • Hoskins, B. J., , I. N. James, , and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

  • Hurrell, J. W., , Y. Kushnir, , G. Ottersen, , and M. E. Visbeck, 2003: The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 279 pp., doi:10.1029/GM134.

  • Jiang, S., , F. Jin, , and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764786, doi:10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , S. B. Feldstein, , and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, doi:10.1175/2008JCLI2380.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , T. Jonsson, , and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , M. Hilmer, , E. Ruprecht, , S. Kleppek, , S. K. Gulev, , and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 33713382, doi:10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., , and M. Ghil, 1993: Adaptive filtering and prediction of noisy multivariate signals: An application to subannual variability in atmospheric angular momentum. Int. J. Bifurcation Chaos, 3, 625634, doi:10.1142/S0218127493000520.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988a: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988b: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 45, 24402458.

    • Search Google Scholar
    • Export Citation
  • Liu, J.-W., , S.-P. Zhang, , and S.-P. Xie, 2013: Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26, 86168627, doi:10.1175/JCLI-D-12-00092.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Luo, D., , and T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys. Res. Lett., 33, L24815, doi:10.1029/2006GL027860.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , J. Cha, , and S. B. Feldstein, 2012: Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part I: A likely connection. J. Atmos. Sci., 69, 23292346, doi:10.1175/JAS-D-11-0289.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and R. H. Jones, 2001: A quantitative estimate of the effect of aliasing in climatological time series. J. Climate, 14, 39873993, doi:10.1175/1520-0442(2001)014<3987:AQEOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409445, doi:10.1007/BF00142586.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1964: Baroclinic instability of the zonal wind. Rev. Geophys., 2, 155176, doi:10.1029/RG002i001p00155.

  • Nakamura, H., , T. Sampe, , A. Goto, , W. Ohfuchi, , and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1968: Long range weather forecasting—History, current status, and outlook. Bull. Amer. Meteor. Soc., 49, 438470.

  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer-Verlag, 636 pp.

  • Plaut, G., , and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236, doi:10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., , and W. Metz, 1989: Three-dimensional linear instability of persistent anomalous large-scale flows. J. Atmos. Sci., 46, 27832801, doi:10.1175/1520-0469(1989)046<2783:TDLIOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., , and W. Metz, 1990: Transient-eddy feedbacks derived from linear theory and observations. J. Atmos. Sci., 47, 27432764, doi:10.1175/1520-0469(1990)047,2743:TEFDFL.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , and J. C. McWilliams, 1974: The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281294, doi:10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647, doi:10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, doi:10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , M. Ghil, , and H. Dijkstra, 2005: Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. J. Mar. Res., 63, 931956, doi:10.1357/002224005774464210.

    • Search Google Scholar
    • Export Citation
  • Speich, S., , H. Dijkstra, , and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation. Nonlinear Processes Geophys., 2, 241268, doi:10.5194/npg-2-241-1995.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., , and D. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and et al. , 2011: Trends and low-frequency variability of storminess over western Europe, 1878–2007. Climate Dyn., 37, 23552371, doi:10.1007/s00382-011-1107-0.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Hannachi, , and B. Hoskins, 2010a: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. Hoskins, , M. Blackburn, , D. Hassell, , and K. Hodges, 2010b: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353, doi:10.1007/s00382-009-0554-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 1
PDF Downloads 5 5 1

Interannual Variability in North Atlantic Weather: Data Analysis and a Quasigeostrophic Model

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
  • | 2 International Research Institute for Climate and Society (IRI), Columbia University, Palisades, New York
  • | 3 Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California, and Geosciences Department, and Laboratoire de Météorologie Dynamique, CNRS, IPSL, Ecole Normale Supérieure, Paris, France
© Get Permissions
Restricted access

Abstract

This paper addresses the effect of interannual variability in jet stream orientation on weather systems over the North Atlantic basin (NAB). The observational analysis relies on 65 yr of NCEP–NCAR reanalysis (1948–2012). The total daily kinetic energy of the geostrophic wind (GTKE) is taken as a measure of storm activity over the North Atlantic. The NAB is partitioned into four rectangular regions, and the winter average of GTKE is calculated for each quadrant. The spatial GTKE average over all four quadrants shows striking year-to-year variability and is strongly correlated with the North Atlantic Oscillation (NAO).

The GTKE strength in the northeast quadrant is closely related to the diffluence angle of the jet stream in the northwest quadrant. To gain insight into the relationship between the diffluence angle and its downstream impact, a quasigeostrophic baroclinic model is used. The results show that an initially zonal jet persists at its initial latitude over 30 days or longer, while a tilted jet propagates meridionally according to the Rossby wave group velocity, unless kept stationary by external forcing.

A Gulf Stream–like narrow sea surface temperature (SST) front provides the requisite forcing for an analytical steady-state solution to this problem. This SST front influences the atmospheric jet in the northwest quadrant: it both strengthens the jet and tilts it northward at higher levels, while its effect is opposite at lower levels. Reanalysis data confirm these effects, which are consistent with thermal wind balance. The results suggest that the interannual variability found in the GTKE may be caused by intrinsic variability of the thermal Gulf Stream front.

Corresponding author address: Yizhak Feliks, Dept. of Mathematics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 70450, Israel. E-mail: yizhakf@iibr.gov.il

Abstract

This paper addresses the effect of interannual variability in jet stream orientation on weather systems over the North Atlantic basin (NAB). The observational analysis relies on 65 yr of NCEP–NCAR reanalysis (1948–2012). The total daily kinetic energy of the geostrophic wind (GTKE) is taken as a measure of storm activity over the North Atlantic. The NAB is partitioned into four rectangular regions, and the winter average of GTKE is calculated for each quadrant. The spatial GTKE average over all four quadrants shows striking year-to-year variability and is strongly correlated with the North Atlantic Oscillation (NAO).

The GTKE strength in the northeast quadrant is closely related to the diffluence angle of the jet stream in the northwest quadrant. To gain insight into the relationship between the diffluence angle and its downstream impact, a quasigeostrophic baroclinic model is used. The results show that an initially zonal jet persists at its initial latitude over 30 days or longer, while a tilted jet propagates meridionally according to the Rossby wave group velocity, unless kept stationary by external forcing.

A Gulf Stream–like narrow sea surface temperature (SST) front provides the requisite forcing for an analytical steady-state solution to this problem. This SST front influences the atmospheric jet in the northwest quadrant: it both strengthens the jet and tilts it northward at higher levels, while its effect is opposite at lower levels. Reanalysis data confirm these effects, which are consistent with thermal wind balance. The results suggest that the interannual variability found in the GTKE may be caused by intrinsic variability of the thermal Gulf Stream front.

Corresponding author address: Yizhak Feliks, Dept. of Mathematics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 70450, Israel. E-mail: yizhakf@iibr.gov.il
Save