• Abramowitz, M., , and I. Stegun, 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1046 pp.

  • Andreas, E. L, , K. J. Claffey, , and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459486, doi:10.1023/A:1002793831076.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., , T. D. Rink, , M. Segal, , D. P. Todey, , C. A. Clark, , M. J. Mitchell, , and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, doi:10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Axelsen, S. L., , and H. van Dop, 2009: Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models. Acta Geophys., 57, 837856, doi:10.2478/s11600-009-0042-5.

    • Search Google Scholar
    • Export Citation
  • Baas, P., , F. C. Bosveld, , H. Klein Baltink, , and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, doi:10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887, doi:10.2478/s11600-007-0049-8.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and et al. , 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, doi:10.1029/98JD01020.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , R. K. Newsom, , J. K. Lundquist, , Y. L. Pichugina, , R. L. Coulter, , and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , Y. L. Pichugina, , N. D. Kelley, , R. M. Hardesty, , and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Bao, J. W., , S. A. Michelson, , P. O. G. Persson, , I. V. Djalalova, , and J. M. Wilczak, 2008: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J. Appl. Meteor. Climatol., 47, 23722394, doi:10.1175/2008JAMC1822.1.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., , D. Kalass, , and U. Weisensee, 1997: Influence of the nocturnal low-level jet on the vertical and mesoscale structure of the stable boundary layer as revealed from Doppler-sodar-observations. Acoustic Remote Sensing Applications, S. P. Singal, Ed., Narosa Publishing House, 236–246.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., , and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, doi:10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., , S. Esbensen, , and R. Greenberg, 1968: Kinematics of the low-level jet. J. Appl. Meteor., 7, 339347, doi:10.1175/1520-0450(1968)007<0339:KOTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brook, R. R., 1985: The Koorin nocturnal low-level jet. Bound.-Layer Meteor., 32, 133154, doi:10.1007/BF00120932.

  • Brown, R. A., 1974: Analytical Methods in Planetary Boundary-Layer Modelling. Wiley, 148 pp.

  • Buajitti, K., , and A. K. Blackadar, 1957: Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486500, doi:10.1002/qj.49708335804.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carslaw, H. S., , and J. C. Jaeger, 1959: Conduction of Heat in Solids. 2nd ed. Clarendon Press, 510 pp.

  • Conangla, L., , and J. Cuxart, 2006: On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Bound.-Layer Meteor., 118, 379400, doi:10.1007/s10546-005-0608-y.

    • Search Google Scholar
    • Export Citation
  • Cosack, N., , S. Emeis, , and M. Kühn, 2007: On the influence of low-level jets on energy production and loading of wind turbines. Wind Energy: Proceedings of the Euromech Colloquium, J. Peinke, I. P. Schaumann, and S. Barth, Eds., Springer, 325328, doi:10.1007/978-3-540-33866-6_61.

  • Cotton, W. R., , M. S. Lin, , R. L. McAnelly, , and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765783, doi:10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coulter, R. L., 1981: Nocturnal wind profile characteristics. Proc. First Int. Symp. on Acoustic Remote Sensing of the Atmosphere and Oceans, Calgary, AB, Canada, University of Calgary, 6.16.11.

  • Cuxart, J., , and M. A. Jiménez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679, doi:10.1175/JAS3903.1.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., , K. J. Allwine, , and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45, 740753, doi:10.1175/JAM2367.1.

    • Search Google Scholar
    • Export Citation
  • Delgado, R., , S. D. Rabenhorst, , B. B. Demoz, , and R. M. Huff, 2014: Elastic lidar measurements of summer nocturnal low level jet events over Baltimore, Maryland. J. Atmos. Chem., 72, 311–333, doi:10.1007/s10874-013-9277-2.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999: Stable boundary-layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446, doi:10.1023/A:1001749007836.

    • Search Google Scholar
    • Export Citation
  • Drake, V. A., , and R. A. Farrow, 1988: The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol., 33, 183210, doi:10.1146/annurev.en.33.010188.001151.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1985: Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci., 42, 18591867, doi:10.1175/1520-0469(1985)042<1859:SWATAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2013: Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Springer, 196 pp., doi:10.1007/978-3-642-30523-8.

  • Emeis, S., 2014: Current issues in wind energy meteorology. Meteor. Appl., 21, 803819, doi:10.1002/met.1472.

  • Fernando, H. J. S., , and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Fiedler, S., , K. Schepanski, , B. Heinold, , P. Knippertz, , and I. Tegen, 2013: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos., 118, 61006121, doi:10.1002/jgrd.50394.

    • Search Google Scholar
    • Export Citation
  • French, A. J., , and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, doi:10.1175/2010JAS3329.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1991: Marginal mixing theories. Atmos.–Ocean, 29, 313339, doi:10.1080/07055900.1991.9649407.

  • Garrett, C., , P. MacCready, , and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, doi:10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Gibson, M. M., , and B. E. Launder, 1978: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech., 86, 491511, doi:10.1017/S0022112078001251.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., 1995: A generalized Ekman layer profile with gradually varying eddy diffusivities. Quart. J. Roy. Meteor. Soc., 121, 445453, doi:10.1002/qj.49712152211.

    • Search Google Scholar
    • Export Citation
  • Gutman, L. N., , and V. M. Malbakhov, 1964: On the theory of katabatic winds of Antarctic (in Russian). Meteor. Issled., 9, 150–155.

  • Higgins, R. W., , Y. Yao, , E. S. Yaresh, , J. E. Janowiak, , and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, doi:10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19A, 199205, doi:10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and et al. , 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Howell, J. F., , and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495520, doi:10.1023/A:1001788515355.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., , P. M. Klein, , M. Xue, , J. K. Lundquist, , F. Zhang, , and Y. Qi, 2013: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 17791802, doi:10.1175/JAMC-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Isard, S. A., , and S. H. Gage, 2001: Flow of Life in the Atmosphere: An Airscape Approach to Understanding Invasive Organisms. Michigan State University Press, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, D. J., , and A. C. Norman, 2004: Not seeing the roots for the branches: Multivalued functions in computer algebra. ACM SIGSAM Bull., 38, 5766, doi:10.1145/1040034.1040036.

    • Search Google Scholar
    • Export Citation
  • Jeričević, A., , and Ž. Večenaj, 2009: Improvement of vertical diffusion analytic schemes under stable atmospheric conditions. Bound.-Layer Meteor., 131, 293307, doi:10.1007/s10546-009-9367-5.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , N.-C. Lau, , I. M. Held, , and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547, doi:10.1175/JAS3847.1.

    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., , and R. D. Kouznetsov, 2012: Low-level jets in the Moscow region in summer and winter observed with a sodar network. Bound.-Layer Meteor., 143, 159175, doi:10.1007/s10546-011-9639-8.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., , X.-M. Hu, , and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, doi:10.1007/s10546-013-9864-4.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1973: On a simplified radiative-conductive heat transfer equation. Pure Appl. Geophys., 109, 18701876, doi:10.1007/BF00876111.

    • Search Google Scholar
    • Export Citation
  • Lykosov, V. N., , and L. N. Gutman, 1972: Turbulent boundary layer above a sloping underlying surface. Izv. Atmos. Oceanic Phys., 8, 799809.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., , and P. B. Rhines, 1991: Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech., 223, 631661, doi:10.1017/S0022112091001581.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., , and P. B. Rhines, 1993: Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 23, 522, doi:10.1175/1520-0485(1993)023<0005:SBBLOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 27012711, doi:10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Mahrt, L., , R. C. Heald, , D. H. Lenschow, , B. B. Stankov, , and I. Troen, 1979: An observational study of the structure of the nocturnal boundary layer. Bound.-Layer Meteor., 17, 247264, doi:10.1007/BF00117983.

    • Search Google Scholar
    • Export Citation
  • Mao, H., , and R. Talbot, 2004: Role of meteorological processes in two New England ozone episodes during summer 2001. J. Geophys. Res., 109, D20305, doi:10.1029/2004JD004850.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., , and R. A. Pielke, 1981: Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci., 38, 21982212, doi:10.1175/1520-0469(1981)038<2198:DBLDOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1954: A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the middle west. Bull. Amer. Meteor. Soc., 35, 166170.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1994: Analytical solutions for the Ekman layer. Bound.-Layer Meteor., 67, 110, doi:10.1007/BF00705505.

  • Milionis, A. E., , and T. D. Davies, 2002: Associations between atmospheric temperature inversions and vertical wind profiles: A preliminary assessment. Meteor. Appl., 9, 223228, doi:10.1017/S1350482702002074.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., , M. D. Simpson, , J. D. Fast, , L. K. Berg, , and R. L. Baskett, 2016: Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model. Wind Energy, 19, 739–762, doi:10.1002/we.1862.

  • Mironov, D., , and E. Fedorovich, 2010: On the limiting effect of the Earth’s rotation on the depth of a stably stratified boundary layer. Quart. J. Roy. Meteor. Soc., 136, 14731480, doi:10.1002/qj.631.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., , R. W. Arritt, , and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, doi:10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, R., 2013: On adding thermodynamic damping mechanisms to refine two classical models of katabatic winds. J. Atmos. Sci., 70, 23252334, doi:10.1175/JAS-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1983: On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height. Bound.-Layer Meteor., 26, 377390, doi:10.1007/BF00119534.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, doi:10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., , and G. E. Rasch, 1973: Three-dimensional characteristics of diurnally varying boundary-layer flows. Mon. Wea. Rev., 101, 746756, doi:10.1175/1520-0493(1973)101<0746:TCODVB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., , M. Segal, , and R. W. Arritt, 2004: Role of topography in forcing low-level jets in the central United States during the 1993 flood-altered terrain simulations. Mon. Wea. Rev., 132, 396403, doi:10.1175/1520-0493(2004)132<0396:ROTIFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, doi:10.1175/2010JAS3368.1.

    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., , and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over the Midwest United States. J. Appl. Meteor., 1, 4347, doi:10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pu, B., , and R. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, doi:10.1175/JAS-D-13-0243.1.

    • Search Google Scholar
    • Export Citation
  • Reicosky, D. C., , L. J. Winkelman, , J. M. Baker, , and D. G. Baker, 1989: Accuracy of hourly air temperatures calculated from daily minima and maxima. Agric. For. Meteor., 46, 193209, doi:10.1016/0168-1923(89)90064-6.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , J. O. Pinto, , A. J. Monaghan, , C. A. Davis, , and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Sadler, E. J., , and R. E. Schroll, 1997: An empirical model of diurnal temperature patterns. Agron. J., 89, 542548, doi:10.2134/agronj1997.00021962008900040002x.

    • Search Google Scholar
    • Export Citation
  • Sanders, C. G., 1975: Comments on the model for estimating the completion of rest for “Red Haven” and “Elberta” peach trees. Hortic. Sci., 10, 560561.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., , A. Beljaars, , P. Bechtold, , T. Mauritsen, , and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, doi:10.1002/jame.20013.

    • Search Google Scholar
    • Export Citation
  • Sangster, W. E., 1967: Diurnal surface geostrophic wind variations over the Great Plains. Preprints, Fifth Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 146–153.

  • Savijärvi, H., 1991: The United States Great Plains diurnal ABL variation and the nocturnal low-level jet. Mon. Wea. Rev., 119, 833840, doi:10.1175/1520-0493(1991)119<0833:TUSGPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., , and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34, 3348, doi:10.1175/1520-0450-34.1.33.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , and E. Fedorovich, 2008: Coriolis effects in homogeneous and inhomogeneous katabatic flows. Quart. J. Roy. Meteor. Soc., 134, 353370, doi:10.1002/qj.217.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , and E. Fedorovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophys., 57, 950980, doi:10.2478/s11600-009-0026-5.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, doi:10.1002/qj.628.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , and E. Fedorovich, 2013: Similarity models for unsteady free convection flows along a differentially cooled horizontal surface. J. Fluid Mech., 736, 444463, doi:10.1017/jfm.2013.538.

    • Search Google Scholar
    • Export Citation
  • Sheih, C. M., 1972: A theoretical study of the diurnal wind variations in the planetary boundary layer. J. Atmos. Sci., 29, 995998, doi:10.1175/1520-0469(1972)029<0995:ATSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., , R. T. McNider, , and J. T. Lin, 1993: An analytical study of diurnal wind-structure variations in the boundary layer and the low-level nocturnal jet. Bound.-Layer Meteor., 63, 397423, doi:10.1007/BF00705360.

    • Search Google Scholar
    • Export Citation
  • Sládkovič, R., , and H.-J. Kanter, 1977: Low-level jet in the Bavarian pre-alpine region. Arch. Meteor. Geophys. Bioklimatol., 25A, 343–355.

    • Search Google Scholar
    • Export Citation
  • Solomon, P., , E. Cowling, , G. Hidy, , and C. Furiness, 2000: Comparison of scientific findings from major ozone field studies in North America and Europe. Atmos. Environ., 34, 18851920, doi:10.1016/S1352-2310(99)00453-7.

    • Search Google Scholar
    • Export Citation
  • Song, J., , K. Liao, , R. L. Coulter, , and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, doi:10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Front. Environ. Sci., 2, 41, doi:10.3389/fenvs.2014.00041.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., , T. Mauritsen, , E. I. F. de Bruijn, , J. Vilà-Guerau de Arellano, , G. Svensson, , and A. A. M. Holtslag, 2008: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869887, doi:10.1175/2007JAMC1702.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stiperski, I., , I. Kavčič, , B. Grisogono, , and D. R. Durran, 2007: Including Coriolis effects in the Prandtl model for katabatic flow. Quart. J. Roy. Meteor. Soc., 133, 101106, doi:10.1002/qj.19.

    • Search Google Scholar
    • Export Citation
  • Storm, B., , J. Dudhia, , S. Basu, , A. Swift, , and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Tan, Z.-M., 2001: An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Bound.-Layer Meteor., 98, 361385, doi:10.1023/A:1018708726112.

    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., , and M. M. Farahani, 1998: An analytical study of the diurnal variations of wind in a semi-geostrophic Ekman boundary layer model. Bound.-Layer Meteor., 86, 313332, doi:10.1023/A:1000694732459.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103, 633653, doi:10.1002/qj.49710343809.

  • Ting, M., , and H. Wang, 2006: The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J. Atmos. Sci., 63, 10561068, doi:10.1175/JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , C. A. Davis, , D. A. Ahijevych, , M. L. Weisman, , and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, doi:10.1175/JAS3768.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , C. A. Davis, , and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, doi:10.1175/JAS-D-14-0134.1.

    • Search Google Scholar
    • Export Citation
  • U.S. Naval Observatory, 2016: Sun or moon rise/set table for one year. Astronomical Applications Department. Subset used: 2008, accessed 21 February 2016. [Available online at http://aa.usno.navy.mil/data/docs/RS_OneYear.php.]

  • Van de Wiel, B. J. H., , A. F. Moene, , G. J. Steeneveld, , P. Baas, , F. C. Bosveld, , and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, doi:10.1175/2010JAS3289.1.

    • Search Google Scholar
    • Export Citation
  • Walters, C. K., , J. A. Winkler, , R. P. Shadbolt, , J. van Ravensway, , and G. D. Bierly, 2008: A long-term climatology of southerly and northerly low-level jets for the central United States. Ann. Assoc. Amer. Geogr., 98, 521552, doi:10.1080/00045600802046387.

    • Search Google Scholar
    • Export Citation
  • Walters, C. K., , J. A. Winkler, , S. Husseini, , R. Keeling, , J. Nikolic, , and S. Zhong, 2014: Low-level jets in the North American Regional Reanalysis (NARR): A comparison with rawinsonde observations. J. Appl. Meteor. Climatol., 53, 20932113, doi:10.1175/JAMC-D-13-0364.1.

    • Search Google Scholar
    • Export Citation
  • Werth, D., , R. Kurzeja, , N. L. Dias, , G. Zhang, , H. Duarte, , M. Fischer, , M. Parker, , and M. Leclerc, 2011: The simulation of the southern Great Plains nocturnal boundary layer and the low-level jet with a high-resolution mesoscale atmospheric model. J. Appl. Meteor. Climatol., 50, 14971513, doi:10.1175/2011JAMC2272.1.

    • Search Google Scholar
    • Export Citation
  • Westbrook, J. K., 2008: Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol., 48, 99106, doi:10.1093/icb/icn040.

    • Search Google Scholar
    • Export Citation
  • Westbrook, J. K., , and S. A. Isard, 1999: Atmospheric scales of biotic dispersal. Agric. For. Meteor., 97, 263274, doi:10.1016/S0168-1923(99)00071-4.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary layer interpretation of the low-level jet. Tellus, 13A, 368378, doi:10.1111/j.2153-3490.1961.tb00098.x.

  • Whiteman, C. D., , X. Bian, , and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2012: An alternative eddy-viscosity model for the horizontally uniform atmospheric boundary layer. Bound.-Layer Meteor., 145, 165184, doi:10.1007/s10546-011-9650-0.

    • Search Google Scholar
    • Export Citation
  • Wolf, W. W., , J. K. Westbrook, , J. Raulston, , S. D. Pair, , and S. E. Hobbs, 1990: Recent airborne radar observations of migrant pests in the United States. Philos. Trans. Roy. Soc. London, B328, 619630, doi:10.1098/rstb.1990.0132.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , J. D. Fast, , and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, doi:10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, M., , E. B. Radcliffe, , D. W. Ragsdale, , I. V. MacRae, , and M. W. Seeley, 2006: Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agric. For. Meteor., 138, 192202, doi:10.1016/j.agrformet.2006.05.001.

    • Search Google Scholar
    • Export Citation
  • Zunckel, M., , G. Held, , R. A. Preston-Whyte, , and A. Joubert, 1996: Low-level wind maxima and the transport of pyrogenic products over southern Africa. J. Geophys. Res., 101, 23 74523 755, doi:10.1029/95JD02602.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 34
PDF Downloads 218 218 38

A Unified Theory for the Great Plains Nocturnal Low-Level Jet

View More View Less
  • 1 School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

A theory is presented for the Great Plains low-level jet in which the jet emerges in the sloping atmospheric boundary layer as the nocturnal phase of an oscillation arising from diurnal variations in turbulent diffusivity (Blackadar mechanism) and surface buoyancy (Holton mechanism). The governing equations are the equations of motion, mass conservation, and thermal energy for a stably stratified fluid in the Boussinesq approximation. Attention is restricted to remote (far above slope) geostrophic winds that blow along the terrain isoheights (southerly for the Great Plains). Diurnally periodic solutions are obtained analytically with diffusivities that vary as piecewise constant functions of time and slope buoyancies that vary as piecewise linear functions of time. The solution is controlled by 11 parameters: slope angle, Coriolis parameter, free-atmosphere Brunt–Väisälä frequency, free-atmosphere geostrophic wind, radiative damping parameter, day and night diffusivities, maximum and minimum surface buoyancies, and times of maximum surface buoyancy and sunset. The Holton mechanism, by itself, results in relatively weak wind maxima but produces strong jets when paired with the Blackadar mechanism. Jets with both Blackadar and Holton mechanisms operating are shown to be broadly consistent with observations and climatological analyses. Jets strengthen with increasing geostrophic wind, maximum surface buoyancy, and day-to-night ratio of the diffusivities and weaken with increasing Brunt–Väisälä frequency and magnitude of minimum slope buoyancy (greater nighttime cooling). Peak winds are maximized for slope angles characteristic of the Great Plains.

Corresponding author address: Alan Shapiro, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072. E-mail: ashapiro@ou.edu

Abstract

A theory is presented for the Great Plains low-level jet in which the jet emerges in the sloping atmospheric boundary layer as the nocturnal phase of an oscillation arising from diurnal variations in turbulent diffusivity (Blackadar mechanism) and surface buoyancy (Holton mechanism). The governing equations are the equations of motion, mass conservation, and thermal energy for a stably stratified fluid in the Boussinesq approximation. Attention is restricted to remote (far above slope) geostrophic winds that blow along the terrain isoheights (southerly for the Great Plains). Diurnally periodic solutions are obtained analytically with diffusivities that vary as piecewise constant functions of time and slope buoyancies that vary as piecewise linear functions of time. The solution is controlled by 11 parameters: slope angle, Coriolis parameter, free-atmosphere Brunt–Väisälä frequency, free-atmosphere geostrophic wind, radiative damping parameter, day and night diffusivities, maximum and minimum surface buoyancies, and times of maximum surface buoyancy and sunset. The Holton mechanism, by itself, results in relatively weak wind maxima but produces strong jets when paired with the Blackadar mechanism. Jets with both Blackadar and Holton mechanisms operating are shown to be broadly consistent with observations and climatological analyses. Jets strengthen with increasing geostrophic wind, maximum surface buoyancy, and day-to-night ratio of the diffusivities and weaken with increasing Brunt–Väisälä frequency and magnitude of minimum slope buoyancy (greater nighttime cooling). Peak winds are maximized for slope angles characteristic of the Great Plains.

Corresponding author address: Alan Shapiro, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072. E-mail: ashapiro@ou.edu
Save