• Achatz, U., , R. Klein, , and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147, doi:10.1017/S0022112010003411.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, doi:10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , J. R. Holton, , and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , P. T. May, , and J. H. Beres, 2004: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res., 109, D20S04, doi:10.1029/2004JD004729.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Andrews, D., , J. Holton, , and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Bei, N., , and F. Zhang, 2014: Mesoscale predictability of moist baroclinic waves: Variable and scale-dependent error growth. Adv. Atmos. Sci., 31, 9951008, doi:10.1007/s00376-014-3191-7.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61, 18051815, doi:10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , M. Alexander, , and J. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, doi:10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , R. R. Garcia, , B. Boville, , and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, doi:10.1002/qj.49709239403.

    • Search Google Scholar
    • Export Citation
  • Charron, M., , and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, doi:10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., , and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739759, doi:10.1175/2010JAS3552.1.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., , I.-S. Song, , and T. Horinouchi, 2005: Momentum flux spectrum of convectively forced gravity waves: Can diabatic forcing be a proxy for convective forcing? J. Atmos. Sci., 62, 41134120, doi:10.1175/JAS3610.1.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., , T. Hauf, , and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899925, doi:10.1002/qj.49711247402.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, doi:10.1002/2015GL063298.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , and N. Butchart, 1984: Propagation and selective transmission of internal gravity waves in a sudden warming. J. Atmos. Sci., 41, 14431460, doi:10.1175/1520-0469(1984)041<1443:PASTOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting. P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.

  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

  • Durran, D. R., 2003: Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences. J. R. Holton, J. Pyle, and J. A. Curry, Eds., Elsevier Science, 1161–1169.

  • Eliassen, A., , and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562, doi:10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., , D. Durran, , and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and et al. , 2011: New gravity wave treatments for GISS climate models. J. Climate, 24, 39894002, doi:10.1175/2011JCLI4013.1.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and et al. , 2013: A comparison between gravity wave omentum fluxes in observations and limate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., , and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174, doi:10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1975: Internal gravity waves: Critical layer absorption in a rotating fluid. J. Fluid Mech., 70, 287304, doi:10.1017/S0022112075002030.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., , M. J. Reeder, , C. J. Marks, , and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, doi:10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, doi:10.1146/annurev.fluid.37.061903.175710.

  • Hertzog, A., and et al. , 2007: Stratéole/Vorcore—Long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter. J. Atmos. Oceanic Technol., 24, 20482061, doi:10.1175/2007JTECHA948.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , G. Boccara, , R. A. Vincent, , F. Vial, , and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, doi:10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Road, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Jewett, B. F., , M. K. Ramamurthy, , and R. M. Rauber, 2003: Origin, evolution, and finescale structure of the St. Valentine’s Day mesoscale gravity wave observed during STORM-FEST. Part III: Gravity wave genesis and the role of evaporation. Mon. Wea. Rev., 131, 617633, doi:10.1175/1520-0493(2003)131<0617:OEAFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. H., , H.-Y. Chun, , and W. Jang, 2014: Horizontal divergence of typhoon-generated gravity waves in the upper troposphere and lower stratosphere (UTLS) and its influence on typhoon evolution. Atmos. Chem. Phys., 14, 31753182, doi:10.5194/acp-14-3175-2014.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., , and H.-Y. Chun, 2010: Stratospheric gravity waves generated by Typhoon Saomai (2006): Numerical modeling in a moving frame following the typhoon. J. Atmos. Sci., 67, 36173636, doi:10.1175/2010JAS3374.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., , H.-Y. Chun, , and D. L. Wu, 2009: A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations. J. Geophys. Res., 114, D22104, doi:10.1029/2009JD011971.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., , H.-Y. Chun, , S.-H. Park, , I.-S. Song, , and H.-J. Choi, 2016: Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmos. Chem. Phys., 16, 47994815, doi:10.5194/acp-16-4799-2016.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., , S. D. Eckermann, , and H. Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 25702592, doi:10.1175/1520-0493(1988)116<2570:AMGWEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and et al. , 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, doi:10.1175/JAS3574.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, doi:10.1175/2011JAS3577.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , M. J. Reeder, , and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , J. D. Doyle, , R. Plougonven, , M. A. Shapiro, , and R. D. Sharman, 2004: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61, 26922706, doi:10.1175/JAS3305.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1997: Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci., 54, 17261738, doi:10.1175/1520-0469(1997)054<1726:MOMJIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and F. Zhang, 2008: Tracking gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65, 24022415, doi:10.1175/2007JAS2482.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Dynamics in Atmospheric Physics. Cambridge University Press, 320 pp.

  • Lott, F., 1999: Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127, 788801, doi:10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , and M. J. Miller, 1997: A new subgrid-scale orographic gravity wave parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mirzaei, M., , C. Zülicke, , A. R. Mohebalhojeh, , F. Ahmadi-Givi, , and R. Plougonven, 2014: Structure, energy, and parameterization of inertia–gravity waves in dry and moist simulations of a baroclinic wave life cycle. J. Atmos. Sci., 71, 23902414, doi:10.1175/JAS-D-13-075.1.

    • Search Google Scholar
    • Export Citation
  • Miyahara, S., 2006: A three-dimensional wave activity flux applicable to inertio-gravity waves. SOLA, 2, 108111, doi:10.2151/sola.2006-028.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., , C. Snyder, , and R. Rotunno, 2009: Spectra, spatial scales, and predictability in a quasigeostrophic model. J. Atmos. Sci., 66, 31153130, doi:10.1175/2009JAS3057.1.

    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, doi:10.1017/S0022112076002899.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., , G. Shutts, , and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., , J. B. Klemp, , and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 36143634, doi:10.1175/MWR-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., , J. A. Whiteway, , and G. Vaughan, 2001: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106, 51735179, doi:10.1029/2000JD900480.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, doi:10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and M. J. Alexander, 2015: Case studies of nonorographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. Atmos., 120, 12781299, doi:10.1002/2014JD022332.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., , M. Ern, , P. Bechtold, , S. D. Eckermann, , S. Kalisch, , Q. T. Trinh, , and M. Riese, 2014: Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys., 14, 10 48310 508, doi:10.5194/acp-14-10483-2014.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626.

  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , R. Suozzo, , N. Balachandran, , A. Lacis, , and G. Russell, 1988: The GISS global climate-middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45, 329370, doi:10.1175/1520-0469(1988)045<0329:TGGCMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and N. A. McFarlane, 2000: The parameterization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, doi:10.1002/qj.49712656802.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, doi:10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., , and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, doi:10.1002/qj.763.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32A, 348364, doi:10.1111/j.2153-3490.1980.tb00962.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1990: Why can’t stably stratified air rise over high ground? Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Met. Soc., 105–107.

  • Snyder, C., , W. C. Skamarock, , and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943212, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124, doi:10.1175/JAS-3363.1.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 12041224, doi:10.1175/2007JAS2369.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 480 pp.

  • Stephan, C., , and M. J. Alexander, 2014: Summer season squall-line simulations: Sensitivity of gravity waves to physics parameterization and implications for their parameterization in global climate models. J. Atmos. Sci., 71, 33763391, doi:10.1175/JAS-D-13-0380.1.

    • Search Google Scholar
    • Export Citation
  • Tan, Z. M., , F. Zhang, , R. Rotunno, , and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804, doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2; Corrigendum, 65, 1479, doi:10.1175/2007JAS2715.1.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and S. E. Koch, 1987: The synoptic setting and possible source mechanisms for mesoscale gravity wave events. Mon. Wea. Rev., 115, 721729, doi:10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet–front systems. Mon. Wea. Rev., 135, 670688, doi:10.1175/MWR3314.1.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., , and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857, doi:10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, J., , and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., , and F. Zhang, 2015: Tracking gravity waves in moist baroclinic jet–front systems. J. Adv. Model. Earth Syst., 7, 6791, doi:10.1002/2014MS000395.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in the upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245, doi:10.1002/qj.49712757702.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , J. Wei, , and S. Wang, 2013: Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations. Acta Meteor. Sin., 27, 446454, doi:10.1007/s13351-013-0301-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , J. Wei, , M. Zhang, , K. P. Bowman, , L. L. Pan, , E. Atlas, , and S. C. Wofsy, 2015: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment. Atmos. Chem. Phys., 15, 76677684, doi:10.5194/acp-15-7667-2015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 12
PDF Downloads 25 25 9

An Analysis of Gravity Wave Spectral Characteristics in Moist Baroclinic Jet–Front Systems

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.

Corresponding author address: Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu

Abstract

This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.

Corresponding author address: Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu
Save