• Ackerman, A. S., , M. P. Kirkpatrick, , D. E. Stevens, , and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, doi:10.1038/nature03174.

    • Search Google Scholar
    • Export Citation
  • Adams, P. J., , and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, doi:10.1029/2001JD001010.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bert, L. K., , C. M. Berkowitz, , J. C. Barnard, , G. Senum, , and S. R. Springston, 2011: Observations of the first aerosol indirect effect in shallow cumuli. Geophys. Res. Lett., 38, L03809, doi:10.1029/2010GL046047.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Breon, F.-M., , D. Tanre, , and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834838, doi:10.1126/science.1066434.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., , J. R. Snider, , and P. Wechsler, 2013: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution. Atmos. Meas. Tech., 6, 23492358, doi:10.5194/amt-6-2349-2013.

    • Search Google Scholar
    • Export Citation
  • Costantino, L., , and F.-M. Breon, 2013: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13, 6988, doi:10.5194/acp-13-69-2013.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and et al. , 2008: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5773, doi:10.1175/BAMS-89-1-57.

    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., and et al. , 2000: Composite ship track characteristics. J. Atmos. Sci., 57, 25422553, doi:10.1175/1520-0469(2000)057<2542:CSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , R. Zhang, , G. Li, , and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, doi:10.1029/2006JD008136.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. L. Eberhard, , D. E. Veron, , and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., , and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, doi:10.1175/JAS-D-13-0261.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H., , G. E. Thomas, , and R. G. Grainger, 2010: Relationship between wind speed and aerosol optical depth over remote ocean. Atmos. Chem. Phys., 10, 59435950, doi:10.5194/acp-10-5943-2010.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , and T. Nakajima, 1993: Effect of Amazon smoke on cloud microphysics and albedo-analysis from satellite imagery. J. Appl. Meteor., 32, 729744, doi:10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , D. Rosenfend, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Klett, D., , and M. H. Davis, 1973: Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30, 107117, doi:10.1175/1520-0469(1973)030<0107:TCEOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., , G. H. Bryan, , and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., , A. Khain, , D. Rosenfeld, , and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and P. Zuidema, 1996: Radiative-dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638, doi:10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., , R. B. Smith, , and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., , and U. Lohmann, 2008: Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65, 25222542, doi:10.1175/2007JAS2492.1.

    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., , and R. B. Smith, 2014: Initiating moist convection in an inhomogeneous layer by uniform ascent. J. Atmos. Sci., 71, 45974610, doi:10.1175/JAS-D-14-0089.1.

    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., , J. R. Minder, , and R. B. Smith, 2014: Wind speed control of tropical orographic convection. J. Atmos. Sci., 71, 26952712, doi:10.1175/JAS-D-13-0399.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., , B. Stevens, , and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., , J.-L. Redelsperger, , and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere–ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548, doi:10.1002/qj.49712656307.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rogers, R. R., , and M. K. Yau, 1989: Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 304 pp.

  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, doi:10.1029/1999GL006066.

    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., , T. Storelvmo, , and R. B. Smith, 2013: Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations. Atmos. Res., 134, 1223, doi:10.1016/j.atmosres.2013.07.017.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , S. R. Herbener, , and S. C. van den Heever, 2015: Impacts of cloud droplet–nucleating aerosols on shallow tropical convection. J. Atmos. Sci., 72, 13691385, doi:10.1175/JAS-D-14-0153.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, R. B., and et al. , 2012: Orographic precipitation in the tropics: The Dominica Experiment. Bull. Amer. Meteor. Soc., 93, 15671579, doi:10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162, doi:10.2151/jmsj.86A.143.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., , S. C. van den Heever, , and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, doi:10.1175/2010JAS3363.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Twomey, S., , and J. Warner, 1967: Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci., 24, 702703, doi:10.1175/1520-0469(1967)024<0702:COMOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., , and D. J. Kirshbaum, 2015: Thermally forced convection over a mountainous tropical island. J. Atmos. Sci., 72, 24842506, doi:10.1175/JAS-D-14-0325.1.

    • Search Google Scholar
    • Export Citation
  • Warner, J., , and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 24, 704706, doi:10.1175/1520-0469(1967)024<0704:TPOCNB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., , R. B. Smith, , and A. D. Nugent, 2015: Shallow, orographically triggered convection over Dominica: Observations from DOMEX. J. Atmos. Sci., 72, 30513072, doi:10.1175/JAS-D-14-0333.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., , Y. Yin, , L. Jin, , Q. Chen, , and J. Chen, 2014: Simulation of aerosol effects on orographic clouds and precipitation using WRF Model with a detailed bin microphysics scheme. Atmos. Sci. Lett., 15, 134139, doi:10.1002/asl2.480.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., , J. Hu, , and A. Radzan, 2009: Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Mon. Wea. Rev., 137, 937953, doi:10.1175/2008MWR2829.1.

    • Search Google Scholar
    • Export Citation
  • Zubler, E. M., , U. Lohmann, , D. Lüthi, , and C. Schär, 2011: Statistical analysis of aerosol effects on simulated mixed-phase clouds and precipitation in the Alps. J. Atmos. Sci., 68, 14741492, doi:10.1175/2011JAS3632.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 10
PDF Downloads 33 33 13

Aerosol Impacts on Thermally Driven Orographic Convection

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 IBM T. J. Watson Research Center, Yorktown Heights, New York
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
© Get Permissions
Restricted access

Abstract

Observations from the Dominica Experiment (DOMEX) field campaign clearly show aerosols having an impact on cloud microphysical properties in thermally driven orographic clouds. It is hypothesized that when convection is forced by island surface heating, aerosols from the mostly forested island surface are lofted into the clouds, resulting in the observed high concentration of aerosols and the high concentration of small cloud droplets. When trying to understand the impact of these surface-based aerosols on precipitation, however, observed differences in cloud-layer moisture add to the complexity. The WRF Model with the aerosol-aware Thompson microphysics scheme is used to study six idealized scenarios of thermally driven island convection: with and without a surface aerosol source, with a relatively dry cloud layer and with a moist cloud layer, and with no wind and with a weak background wind. It is found that at least a weak background wind is needed to ensure Dominica-relevant results and that the effect of cloud-layer moisture on cloud and precipitation formation dominates over the effect of aerosol. The aerosol impact is limited by the dominance of precipitation formation through accretion. Nevertheless, in order to match observed cloud microphysical properties and precipitation, both a relatively dry cloud layer and a surface aerosol source are needed. The impact of a surface aerosol source on precipitation is strongest when the environment is not conducive to cloud growth.

Corresponding author address: Alison D. Nugent, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: nugent@ucar.edu

Abstract

Observations from the Dominica Experiment (DOMEX) field campaign clearly show aerosols having an impact on cloud microphysical properties in thermally driven orographic clouds. It is hypothesized that when convection is forced by island surface heating, aerosols from the mostly forested island surface are lofted into the clouds, resulting in the observed high concentration of aerosols and the high concentration of small cloud droplets. When trying to understand the impact of these surface-based aerosols on precipitation, however, observed differences in cloud-layer moisture add to the complexity. The WRF Model with the aerosol-aware Thompson microphysics scheme is used to study six idealized scenarios of thermally driven island convection: with and without a surface aerosol source, with a relatively dry cloud layer and with a moist cloud layer, and with no wind and with a weak background wind. It is found that at least a weak background wind is needed to ensure Dominica-relevant results and that the effect of cloud-layer moisture on cloud and precipitation formation dominates over the effect of aerosol. The aerosol impact is limited by the dominance of precipitation formation through accretion. Nevertheless, in order to match observed cloud microphysical properties and precipitation, both a relatively dry cloud layer and a surface aerosol source are needed. The impact of a surface aerosol source on precipitation is strongest when the environment is not conducive to cloud growth.

Corresponding author address: Alison D. Nugent, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: nugent@ucar.edu
Save