The Warm-Core Structure of Hurricane Earl (2010)

Daniel P. Stern University Corporation for Atmospheric Research, Monterey, California

Search for other papers by Daniel P. Stern in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The warm-core structure of Hurricane Earl (2010) is examined on four different days, spanning periods of both rapid intensification (RI) and weakening, using high-altitude dropsondes from both the inner core and the environment, as well as a convection-permitting numerical forecast. During RI, strong warming occurred at all heights, while during rapid weakening, little temperature change was observed, implying the likelihood of substantial (unobserved) cooling above flight level (12 km). Using a local environmental reference state yields a perturbation temperature profile with two distinct maxima of approximately equal magnitude: one at 4–6-km and the other at 9–12-km height. However, using a climatological-mean sounding instead results in the upper-level maximum being substantially stronger than the midlevel maximum. This difference results from the fact that the local environment of Earl was warmer than the climatological mean and that this relative warmth increased with height. There is no obvious systematic relationship between the height of the warm core and either intensity or intensity change for either reference state.

The structure of the warm core simulated by the convection-permitting forecast compares well with the observations for the periods encompassing RI. Later, an eyewall replacement cycle went unforecast, and increased errors in the warm-core structure are likely related to errors in the forecast wind structure. At most times, the simulated radius of maximum winds (RMW) had too great of an outward slope (the upper-level RMW was too large), and this is likely also associated with structural biases in the warm core.

Corresponding author address: Daniel P. Stern, University Corporation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: dstern@ucar.edu

Abstract

The warm-core structure of Hurricane Earl (2010) is examined on four different days, spanning periods of both rapid intensification (RI) and weakening, using high-altitude dropsondes from both the inner core and the environment, as well as a convection-permitting numerical forecast. During RI, strong warming occurred at all heights, while during rapid weakening, little temperature change was observed, implying the likelihood of substantial (unobserved) cooling above flight level (12 km). Using a local environmental reference state yields a perturbation temperature profile with two distinct maxima of approximately equal magnitude: one at 4–6-km and the other at 9–12-km height. However, using a climatological-mean sounding instead results in the upper-level maximum being substantially stronger than the midlevel maximum. This difference results from the fact that the local environment of Earl was warmer than the climatological mean and that this relative warmth increased with height. There is no obvious systematic relationship between the height of the warm core and either intensity or intensity change for either reference state.

The structure of the warm core simulated by the convection-permitting forecast compares well with the observations for the periods encompassing RI. Later, an eyewall replacement cycle went unforecast, and increased errors in the warm-core structure are likely related to errors in the forecast wind structure. At most times, the simulated radius of maximum winds (RMW) had too great of an outward slope (the upper-level RMW was too large), and this is likely also associated with structural biases in the warm core.

Corresponding author address: Daniel P. Stern, University Corporation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: dstern@ucar.edu
Save
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2011: Tropical cyclone report: Hurricane Earl. National Hurricane Center Tropical Cyclone Rep. AL072010, 29 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL072010_Earl.pdf.]

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, doi:10.1175/JAS-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, doi:10.1175/WAF-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, doi:10.1175/MWR-D-13-00021.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., J. S. Griffin Jr., P. P. Dodge, and N. F. Griffin, 2004: Automatic Doppler analysis of three-dimensional wind fields in hurricane eyewalls. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 5D.4. [Available online at http://ams.confex.com/ams/pdfpapers/75806.pdf.]

  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, doi:10.1175/JAS3596.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. A. Rubsam, 1968: Hurricane Hilda, 1964. Part II: Structure and budgets of the hurricane core on 1 October 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense Hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Appl. Meteor. Climatol., 22, 744757, doi:10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, doi:10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • La Seur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, doi:10.1175/2009MWR2786.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF Model. J. Adv. Model. Earth Syst., 5, 382405, doi:10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamach, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, doi:10.1002/qj.49.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., 2010: The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations. Ph. D. dissertation, University of Miami, 455 pp. [Available online at http://scholarlyrepository.miami.edu/cgi/viewcontent.cgi?article=1444&context=oa_dissertations.]

  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 18491873, doi:10.1175/JAS-D-12-0258.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, doi:10.1175/JAS-D-13-0302.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
  • Young, K., J. Wang, T. Hock, and D. Lauritsen, 2011: Genesis and Rapid Intensification Processes (GRIP) 2010 quality controlled dropsonde dataset. NASA Earth Observing System Data and Information System, accessed September 2013. [Available online at 10.5067/GRIP/DROPSONDE/DATA201.]

  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, doi:10.1175/BAMS-D-13-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulation. Mon. Wea. Rev., 143, 39813995, doi:10.1175/MWR-D-14-00341.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, and R. F. Rogers, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, doi:10.1175/MWR-D-14-00339.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1642 1106 380
PDF Downloads 420 65 5