• Brooks, I. M., , A. K. Goroch, , and D. P. Rogers, 1999: Observations of strong surface radar ducts over the Persian Gulf. J. Appl. Meteor., 38, 12931310, doi:10.1175/1520-0450(1999)038<1293:OOSSRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and C. D. Watkins, 1970: Observations of clear air turbulence by high power radar. Nature, 227, 260263, doi:10.1038/227260a0.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, doi:10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , and W. T. Thompson, 1997: Mesoscale modeling of summertime refractive conditions in the Southern California bight. J. Appl. Meteor., 36, 2231, doi:10.1175/1520-0450(1997)036<0022:MMOSRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , T. Haack, , and R. M. Samelson, 1999: Mesoscale simulation of supercritical, subcritical, and transcritical flow along coastal topography. J. Atmos. Sci., 56, 27802795, doi:10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 2005: Kelvin–Helmholtz instability as a boundary-value problem. Environ. Fluid Mech., 5, 507525, doi:10.1007/s10652-005-2234-0.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , and D. Koračin, 2008: Response of the summer marine layer flow to an extreme California coastal bend. Mon. Wea. Rev., 136, 28942992, doi:10.1175/2007MWR2336.1.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , D. P. Rogers, , W. Nuss, , and W. T. Thompson, 1999: Adjustment of the summer marine boundary layer around Point Sur, California. Mon. Wea. Rev., 127, 21432159, doi:10.1175/1520-0493(1999)127<2143:AOTSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ďurán, I. B., , J.-F. Geleyn, , and F. Váňa, 2014: A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the whole range of Richardson numbers. J. Atmos. Sci., 71, 30043026, doi:10.1175/JAS-D-13-0203.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., , A. M. Rogerson, , C. D. Winant, , and D. P. Rogers, 2001: Adjustment of the marine atmospheric boundary layer to a coastal cape. J. Atmos. Sci., 58, 15111528, doi:10.1175/1520-0469(2001)058<1511:AOTMAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, X., 2001: Evaluation of the MacCready turbulence sensor. M.S. thesis, Dept. of Atmospheric Science, University of Wyoming, 81 pp.

  • Gaiser, P. W., and et al. , 2004: The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472361, doi:10.1109/TGRS.2004.836867.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., , and D. Belušić, 2008: Improving mixing length-scale for stable boundary layers. Quart. J. Roy. Meteor. Soc., 134, 21852192, doi:10.1002/qj.347.

    • Search Google Scholar
    • Export Citation
  • Haack, T., , and S. D. Burk, 2001: Summertime marine refractivity conditions along coastal California. J. Appl. Meteor., 40, 673687, doi:10.1175/1520-0450(2001)040<0673:SMRCAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haack, T., , S. D. Burk, , C. Dorman, , and D. Rodgers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688708, doi:10.1175/1520-0493(2001)129<0688:SFIWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • MacCready, P. B., Jr., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor., 3, 439449, doi:10.1175/1520-0450(1964)003<0439:SOGVFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Miles, J. W., , and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, doi:10.1017/S0022112064001252.

  • Parish, T. R., , and D. Leon, 2013: Measurement of cloud perturbation pressures using an instrumented aircraft. J. Atmos. Oceanic Technol., 30, 215229, doi:10.1175/JTECH-D-12-00011.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , M. D. Burkhart, , and A. R. Rodi, 2007: Determination of the horizontal pressure gradient force using global positioning system onboard an instrumented aircraft. J. Atmos. Oceanic Technol., 24, 521528, doi:10.1175/JTECH1986.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , D. A. Rahn, , and D. Leon, 2014: Aircraft observations of the marine boundary layer adjustment near Point Arguello, CA. J. Appl. Meteor. Climatol., 53, 970989, doi:10.1175/JAMC-D-13-0164.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , R. D. Garreaud, , and J. A. Rutllant, 2011: The low-level atmospheric circulation near Tongoy Bay–point Lengua de Vaca (Chilean coast, 30°S). Mon. Wea. Rev., 139, 36283647, doi:10.1175/MWR-D-11-00059.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , T. R. Parish, , and D. Leon, 2013: Airborne measurements of coastal jet transition around Point Conception, California. Mon. Wea. Rev., 141, 38273839, doi:10.1175/MWR-D-13-00030.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , T. R. Parish, , and D. Leon, 2014: Coastal jet adjustment near Point Conception, California, with opposing wind in the bight. Mon. Wea. Rev., 142, 13441360, doi:10.1175/MWR-D-13-00177.1.

    • Search Google Scholar
    • Export Citation
  • Rodi, A. R., , and P. A. Spyers-Duran, 1972: Analysis of time response of airborne temperature sensors. J. Appl. Meteor., 11, 554556, doi:10.1175/1520-0450(1972)011<0554:AOTROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., and et al. , 1998: Highlights of coastal waves 1996. Bull. Amer. Meteor. Soc., 79, 13071326, doi:10.1175/1520-0477(1998)079<1307:HOCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogerson, A. M., 1999: Transcritical flows in the coastal marine atmospheric boundary layer. J. Atmos. Sci., 56, 27612779, doi:10.1175/1520-0469(1999)056<2761:TFITCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 15711584, doi:10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and S. J. Lentz, 1994: The horizontal momentum balance in the marine atmospheric boundary layer during CODE-2. J. Atmos. Sci., 51, 37453757, doi:10.1175/1520-0469(1994)051<3745:THMBIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1969: Mechanism of clear air turbulence. Clear Air Turbulence and Its Detection, Y.-H. Pao and A. Goldburg, Eds., Plenum Press, 34–50.

  • Sharman, R. D., , L. B. Cornman, , G. Meymaris, , J. Pearson, , and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, doi:10.1175/JAMC-D-13-0329.1.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., , and W. R. Peltier, 1989: The transition between Kelvin–Helmholtz and Holmboe instability: An investigation of the overreflection hypothesis. J. Atmos. Sci., 46, 36983720, doi:10.1175/1520-0469(1989)046<3698:TTBKAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strauss, L., , S. Serafin, , S. Haimov, , and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Roy. Meteor. Soc., 141, 32073225, doi:10.1002/qj.2604.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tjernström, M., , and B. Grisogono, 2000: Simulations of supercritical flow around points and capes in a coastal atmosphere. J. Atmos. Sci., 57, 108135, doi:10.1175/1520-0469(2000)057<0108:SOSFAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troy, C. D., , and J. R. Koseff, 2005: The instability and breaking of long internal waves. J. Fluid Mech., 543, 107136, doi:10.1017/S0022112005006798.

    • Search Google Scholar
    • Export Citation
  • Veneziani, M., , C. A. Edwards, , and A. M. Moore, 2009: A central California coastal ocean modeling study: 2. Adjoint sensitivities to local and remote forcing mechanisms. J. Geophys. Res., 114, C04020, doi:10.1029/2008JC004775.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , D. Wilson, , T. Haack, , P. Clark, , H. Lean, , and R. Marshall, 2012: Effects of initial and boundary conditions of mesoscale models on simulated atmospheric refractivity. J. Appl. Meteor. Climatol., 51, 115132, doi:10.1175/JAMC-D-11-012.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , P. Wechsler, , W. Kuestner, , J. French, , A. Rodi, , B. Glover, , M. Burkhart, , and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and et al. , 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Winant, C. D., , C. E. Dorman, , C. A. Friehe, , and R. C. Beardsley, 1988: The marine boundary layer off Northern California: An example of supercritical channel flow. J. Atmos. Sci., 45, 35883605, doi:10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yih, C.-S., 1969: A class of solutions for steady stratified flows. J. Fluid Mech., 36, 7585, doi:10.1017/S0022112069001522.

  • Zilitinkevich, S., , T. Elperin, , N. Kleeorin, , and I. Rogachevskii, 2007: Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167192, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 2
PDF Downloads 15 15 3

Observations of Large Wind Shear above the Marine Boundary Layer near Point Buchon, California

View More View Less
  • 1 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
  • | 2 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

Particularly strong winds along the coast of Southern California on 24 May 2012 were measured by the Wyoming King Air research aircraft during the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE). The fast flow is bounded laterally by the coastal topography and vertically by a pronounced temperature inversion separating the cool, moist air in the marine boundary layer (MBL) from the warm, dry air aloft. Many studies have investigated the response of this two-layer flow to changes in the coastline by invoking hydraulic theory, which explains the essential characteristics including changes in MBL depth and the attendant wind. Processes occurring just above the MBL are important to the low-level thermodynamic and kinematic structure. Observations on this day demonstrate how the large shear above the MBL can impact the lower atmosphere. A typical two-layer system was observed north of Point Buchon, which was supercritical. Around Point Buchon, the depth of the MBL decreased and wind increased, characteristic of an expansion fan. As a result, the Richardson number becomes reduced and favors shear instability that breaks down into turbulence. Observations indicate that a secondary well-mixed layer develops above the MBL that is bounded by narrow layers of high stability separating the secondary layer from the MBL below and the free troposphere above. It is hypothesized that the secondary layer develops as a result of Kelvin–Helmholtz instability, although more targeted observations are needed to confirm or reject that hypothesis.

Corresponding author address: David A. Rahn, Department of Geography and Atmospheric Science, University of Kansas, 1475 Jayhawk Blvd., 201 Lindley Hall, Lawrence, KS 66045-7613. E-mail: darahn@ku.edu

Abstract

Particularly strong winds along the coast of Southern California on 24 May 2012 were measured by the Wyoming King Air research aircraft during the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE). The fast flow is bounded laterally by the coastal topography and vertically by a pronounced temperature inversion separating the cool, moist air in the marine boundary layer (MBL) from the warm, dry air aloft. Many studies have investigated the response of this two-layer flow to changes in the coastline by invoking hydraulic theory, which explains the essential characteristics including changes in MBL depth and the attendant wind. Processes occurring just above the MBL are important to the low-level thermodynamic and kinematic structure. Observations on this day demonstrate how the large shear above the MBL can impact the lower atmosphere. A typical two-layer system was observed north of Point Buchon, which was supercritical. Around Point Buchon, the depth of the MBL decreased and wind increased, characteristic of an expansion fan. As a result, the Richardson number becomes reduced and favors shear instability that breaks down into turbulence. Observations indicate that a secondary well-mixed layer develops above the MBL that is bounded by narrow layers of high stability separating the secondary layer from the MBL below and the free troposphere above. It is hypothesized that the secondary layer develops as a result of Kelvin–Helmholtz instability, although more targeted observations are needed to confirm or reject that hypothesis.

Corresponding author address: David A. Rahn, Department of Geography and Atmospheric Science, University of Kansas, 1475 Jayhawk Blvd., 201 Lindley Hall, Lawrence, KS 66045-7613. E-mail: darahn@ku.edu
Save