• Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett., 42, 68606867, doi:10.1002/2015GL065234.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and K. H. Rosenlof, 2003: Gravity-wave forcing in the stratosphere: Observational constraints from the upper atmosphere research satellite and implications for parameterization in global models. J. Geophys. Res., 108, 4597, doi:10.1029/2003JD003373.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, doi:10.1002/2013JD020526.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , S. D. Eckermann, , D. Broutman, , and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, doi:10.1029/GL038587.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics.International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Barnes, E. A., , N. W. Barnes, , and L. M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852867, doi:10.1175/JCLI-D-13-00246.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. W., , and B. A. McDaniel, 2007: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci., 64, 29682974, doi:10.1175/JAS3979.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and et al. , 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., , E. P. Gerber, , and O. Bühler, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 37803798, doi:10.1175/JAS-D-12-0346.1.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , and F. Lott, 2015: A stochastic parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, doi:10.1002/2015GL063298.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , F. Lott, , and A. Hertzog, 2014: Intermittency in a stochastic parameterization of nonorographic gravity waves. J. Geophys. Res. Atmos., 119, 11 90511 919, doi:10.1002/2014JD022002.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ern, M., , P. Preusse, , M. Krebsbach, , M. G. Mlynczak, , and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869, doi:10.5194/acp-8-845-2008.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and et al. , 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, doi:10.1002/2013JD020731.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and et al. , 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report. SPARC Newsletter, No. 30, SPARC International Project Office, Toronto, ON, Canada, 20–26.

  • Eyring, V., , T. G. Shepherd, , and D. W. Waugh, 2010: SPARC report on the evaluation of chemistry–climate models. SPARC Tech. Rep. 5, 425 pp.

  • Geller, M. A., and et al. , 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , J. D. Doyle, , S. D. Eckermann, , Q. Jiang, , and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, doi:10.1175/JAS-D-13-0332.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , G. Boccara, , R. A. Vincent, , F. Vial, , and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , M. J. Alexander, , and R. Plougonven, 2012: On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, doi:10.1175/JAS-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., , C. J. Wright, , N. D. Smith, , and N. J. Mitchell, 2015: The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys., 15, 77977818, doi:10.5194/acp-15-7797-2015.

    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., , A. Hertzog, , R. Plougonven, , A. de la Cámara, , and F. Lott, 2015: Gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, doi:10.1175/JAS-D-14-0324.1.

    • Search Google Scholar
    • Export Citation
  • Jourdain, L., , S. Bekki, , F. Lott, , and F. Lefevre, 2008: The coupled chemistry–climate model LMDz–REPROBUS: Description and evaluation of a transient simulation of the period 1980–1999. Ann. Geophys., 26, 13911413, doi:10.5194/angeo-26-1391-2008.

    • Search Google Scholar
    • Export Citation
  • Kalisch, S., , P. Preusse, , M. Ern, , S. D. Eckermann, , and M. Riese, 2014: Differences in gravity wave drag between realistic oblique and assumed vertical propagation. J. Geophys. Res. Atmos., 119, 10 08110 099, doi:10.1002/2014JD021779.

    • Search Google Scholar
    • Export Citation
  • Lott, F., 1999: Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127, 788801, doi:10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, doi:10.1002/jgrd.50705.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , L. Fairhead, , F. Hourdin, , and P. Levan, 2005: The stratospheric version of LMDz: Dynamical climatologies, Arctic Oscillation, and impact on the surface climate. Climate Dyn., 25, 851868, doi:10.1007/s00382-005-0064-x.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , T. G. Shepherd, , S. Polavarapu, , and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , D. L. Hartmann, , and J. D. Farrara, 1985: Climatology and interanual variability of wave, mean-flow interaction in the Southern Hemisphere. J. Atmos. Sci., 42, 21892206, doi:10.1175/1520-0469(1985)042<2189:CAIVOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , G. J. Shutts, , and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., , S. Pawson, , R. L. Fogt, , J. E. Nielsen, , and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., , M. Ern, , P. Bechtold, , S. D. Eckermann, , S. Kalisch, , Q. T. Trinh, , and M. Riese, 2014: Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys., 14, 10 48310 508, doi:10.5194/acp-14-10483-2014.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Watanabe, , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, doi:10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Tateno, , S. Watanabe, , and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, doi:10.1175/JAS-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Scheffler, G., , and M. Pulido, 2015: Compensation between resolved and unresolved wave drag in the stratospheric final warmings of the Southern Hemisphere. J. Atmos. Sci., 72, 43934411, doi:10.1175/JAS-D-14-0270.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , J. Perlwitz, , N. Harnik, , P. A. Newman, , and S. Pawson, 2011: The impact of stratospheric ozone changes on downward wave coupling in the Southern Hemisphere. J. Climate, 24, 42104229, doi:10.1175/2011JCLI4170.1.

    • Search Google Scholar
    • Export Citation
  • Shibuya, R., , K. Sato, , Y. Tomikawa, , M. Tsutsumi, , and T. Sato, 2015: A study of multiple tropopause structures caused by inertia–gravity waves in the Antarctic. J. Atmos. Sci., 72, 21092130, doi:10.1175/JAS-D-14-0228.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., , and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, doi:10.1002/qj.763.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , G. Chen, , and W. A. Robinson, 2014: The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. J. Atmos. Sci., 71, 23352353, doi:10.1175/JAS-D-13-0290.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , W. J. Randel, , S. Pawson, , P. A. Newman, , and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201, doi:10.1029/1999JD900795.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , and A. J. Charlton-Perez, 2013: Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J. Geophys. Res. Atmos., 118, 25352546, doi:10.1002/jgrd.50254.

    • Search Google Scholar
    • Export Citation
  • Wright, C. J., , S. M. Osprey, , and J. C. Gille, 2013: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. Atmos., 118, 10 98010 993, doi:10.1002/jgrd.50869.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 12
PDF Downloads 31 31 7

On the Gravity Wave Forcing during the Southern Stratospheric Final Warming in LMDZ

View More View Less
  • 1 Laboratoire de Météorologie Dynamique du CNRS, École Normale Supérieure, Paris, and Centre de Mathématiques et de Leurs Applications, École Normale Supérieure de Cachan, Cachan, France
  • | 2 Laboratoire de Météorologie Dynamique du CNRS, École Normale Supérieure, Paris, France
  • | 3 Laboratoire de Météorologie Dynamique du CNRS, École Polytechnique, Palaiseau, France
© Get Permissions
Restricted access

Abstract

The austral stratospheric final warming date is often predicted with substantial delay in several climate models. This systematic error is generally attributed to insufficient parameterized gravity wave (GW) drag in the stratosphere around 60°S. A simulation with a general circulation model [Laboratoire de Météorologie Dynamique zoom model (LMDZ)] with a much less pronounced bias is used to analyze the contribution of the different types of waves to the dynamics of the final warming. For this purpose, the resolved and unresolved wave forcing of the middle atmosphere during the austral spring are examined in LMDZ and reanalysis data, and a good agreement is found between the two datasets. The role of parameterized orographic and nonorographic GWs in LMDZ is further examined, and it is found that orographic and nonorographic GWs contribute evenly to the GW forcing in the stratosphere, unlike in other climate models, where orographic GWs are the main contributor. This result is shown to be in good agreement with GW-resolving operational analysis products. It is demonstrated that the significant contribution of the nonorographic GWs is due to highly intermittent momentum fluxes produced by the source-related parameterizations used in LMDZ, in qualitative agreement with recent observations. This yields sporadic high-amplitude GWs that break in the stratosphere and force the circulation at lower altitudes than more homogeneously distributed nonorographic GW parameterizations do.

Current affiliation: National Center for Atmospheric Research,b Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alvaro de la Cámara, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: acamara@ucar.edu

Abstract

The austral stratospheric final warming date is often predicted with substantial delay in several climate models. This systematic error is generally attributed to insufficient parameterized gravity wave (GW) drag in the stratosphere around 60°S. A simulation with a general circulation model [Laboratoire de Météorologie Dynamique zoom model (LMDZ)] with a much less pronounced bias is used to analyze the contribution of the different types of waves to the dynamics of the final warming. For this purpose, the resolved and unresolved wave forcing of the middle atmosphere during the austral spring are examined in LMDZ and reanalysis data, and a good agreement is found between the two datasets. The role of parameterized orographic and nonorographic GWs in LMDZ is further examined, and it is found that orographic and nonorographic GWs contribute evenly to the GW forcing in the stratosphere, unlike in other climate models, where orographic GWs are the main contributor. This result is shown to be in good agreement with GW-resolving operational analysis products. It is demonstrated that the significant contribution of the nonorographic GWs is due to highly intermittent momentum fluxes produced by the source-related parameterizations used in LMDZ, in qualitative agreement with recent observations. This yields sporadic high-amplitude GWs that break in the stratosphere and force the circulation at lower altitudes than more homogeneously distributed nonorographic GW parameterizations do.

Current affiliation: National Center for Atmospheric Research,b Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alvaro de la Cámara, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: acamara@ucar.edu
Save