The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part I: Bin Microphysics Simulations

Adele L. Igel Colorado State University, Fort Collins, Colorado

Search for other papers by Adele L. Igel in
Current site
Google Scholar
PubMed
Close
and
Susan C. van den Heever Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this two-part study, the relationships between the width of the cloud droplet size distribution and the microphysical processes and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, simulations are run with a bin microphysics scheme and the relative widths (standard deviation divided by mean diameter) of the simulated cloud droplet size distributions are calculated. They reveal that the value of the relative width is higher and less variable in the subsaturated regions of the cloud than in the supersaturated regions owing to both the evaporation process itself and enhanced mixing and entrainment of environmental air. Unlike in some previous studies, the relative width is not found to depend strongly on the initial aerosol concentration or mean droplet concentration. Nonetheless, local values of the relative width are found to positively correlate with local values of the droplet concentrations, particularly in the supersaturated regions of clouds. In general, the distributions become narrower as the local droplet concentration increases, which is consistent with the difference in relative width between the supersaturated and subsaturated cloud regions and with physically based expectations. Traditional parameterizations for the relative width (or shape parameter, a related quantity) of cloud droplet size distributions in bulk microphysics schemes are based on cloud mean values, but the bin simulation results shown here demonstrate that more appropriate parameterizations should be based on the relationship between the local values of the relative width and the cloud droplet concentration.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Adele L. Igel, Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616. E-mail: aigel@ucdavis.edu

Abstract

In this two-part study, the relationships between the width of the cloud droplet size distribution and the microphysical processes and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, simulations are run with a bin microphysics scheme and the relative widths (standard deviation divided by mean diameter) of the simulated cloud droplet size distributions are calculated. They reveal that the value of the relative width is higher and less variable in the subsaturated regions of the cloud than in the supersaturated regions owing to both the evaporation process itself and enhanced mixing and entrainment of environmental air. Unlike in some previous studies, the relative width is not found to depend strongly on the initial aerosol concentration or mean droplet concentration. Nonetheless, local values of the relative width are found to positively correlate with local values of the droplet concentrations, particularly in the supersaturated regions of clouds. In general, the distributions become narrower as the local droplet concentration increases, which is consistent with the difference in relative width between the supersaturated and subsaturated cloud regions and with physically based expectations. Traditional parameterizations for the relative width (or shape parameter, a related quantity) of cloud droplet size distributions in bulk microphysics schemes are based on cloud mean values, but the bin simulation results shown here demonstrate that more appropriate parameterizations should be based on the relationship between the local values of the relative width and the cloud droplet concentration.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Adele L. Igel, Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616. E-mail: aigel@ucdavis.edu
Save
  • Cohen, C., and E. W. McCaul, 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 25472565, doi:10.1175/MWR3195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, A. A., C. J. De Oliveira, J. C. P. De Oliveira, and A. J. D. C. Sampaio, 2000: Microphysical observations of warm cumulus clouds in Ceara, Brazil. Atmos. Res., 54, 167199, doi:10.1016/S0169-8095(00)00045-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. Boers, B. Stevens, and W. R. Cotton, 1997: A modeling study of the effect of drizzle on cloud optical depth and susceptibility. J. Geophys. Res., 102, 13 52713 534, doi:10.1029/97JD00963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J.-L. Brenguier, and F. Burnet, 2010: Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes. Atmos. Chem. Phys., 10, 48354848, doi:10.5194/acp-10-4835-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, F. L. T., J. A. Martins, and M. A. Silva Dias, 2008: Shape parameter analysis using cloud spectra and gamma functions in the numerical modeling RAMS during LBA Project at Amazonian region, Brazil. Atmos. Res., 89, 111, doi:10.1016/j.atmosres.2007.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulation of warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp. [Available online at http://www.personal.psu.edu/users/m/r/mrh318/Harrington-CSU-1997.pdf.]

  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646673, doi:10.1175/1520-0469(1974)031<0646:FCTSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., H. Jonsson, L.-P. Wang, G. Buzorius, R. C. Flagan, J. H. Seinfeld, and A. Nenes, 2009a: On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. J. Geophys. Res., 114, D07201, doi:10.1029/2008JD010502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., A. Nenes, R. C. Flagan, J. H. Seinfeld, G. Buzorius, and H. Jonsson, 2009b: Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. J. Geophys. Res., 114, D11205, doi:10.1029/2008JD011387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., S. Noble, and V. Jha, 2012: Cloud droplet spectral width relationship to CCN spectra and vertical velocity. J. Geophys. Res., 117, D11211, doi:10.1029/2012JD017546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., and S. C. van den Heever, 2016: The importance of the shape of cloud droplet size distributions in shallow cumulus clouds. Part II: Bulk microphysics simulations. J. Atmos. Sci., 74, 259273, doi:10.1175/JAS-D-15-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, doi:10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, doi:10.1111/j.2153-3490.1962.tb00128.x.

  • Liu, Y., and P. H. Daum, 2002: Anthropogenic aerosols: Indirect warming effect from dispersion forcing. Nature, 419, 580581, doi:10.1038/419580a.

  • Liu, Y., P. H. Daum, and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33, L02810, doi:10.1029/2005GL024052.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res., 147–148, 183204, doi:10.1016/j.atmosres.2014.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., and J. H. Seinfeld, 2006: Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing. J. Geophys. Res., 111, D02207, doi:10.1029/2005JD006419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, D15201, doi:10.1029/2007JD009354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann, 2012: Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects. Geophys. Res. Lett., 39, L21808, doi:10.1029/2012GL053599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, J. A., and M. A. F. Silva Dias, 2009: The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region. Environ. Res. Lett., 4, 015002, doi:10.1088/1748-9326/4/1/015002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. G. Baumgardner, 1989: Entrainment and fine-scale mixing in a continental convective cloud. J. Atmos. Sci., 46, 261278, doi:10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandithurai, G., S. Dipu, T. V. Prabha, R. S. Maheskumar, J. R. Kulkarni, and B. N. Goswami, 2012: Aerosol effect on droplet spectral dispersion in warm continental cumuli. J. Geophys. Res., 117, D16202, doi:10.1029/2011JD016532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., W. W. Grabowski, and J.-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33, L19810, doi:10.1029/2006GL026841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Y., U. Lohmann, R. Leaitch, and M. Kulmala, 2007: An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds. J. Geophys. Res., 112, D11117, doi:10.1029/2006JD007401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. Korolev, and A. Khain, 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra. J. Geophys. Res. Atmos., 119, 12 87212 887, doi:10.1002/2014JD021885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, A. Korolev, and L. Magaritz-Ronen, 2016: Theoretical investigation of mixing in warm clouds—Part 2: Homogeneous mixing. Atmos. Chem. Phys., 16, 92559272, doi:10.5194/acp-16-9255-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1993: A study of the broadening of droplet size distributions in cumuli. J. Atmos. Sci., 50, 22302244, doi:10.1175/1520-0469(1993)050<2230:ASOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Y. Liu, 2003: Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J. Climate, 16, 34763481, doi:10.1175/1520-0442(2003)016<3476:SOTFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20 73520 747, doi:10.1029/2001JD000785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, doi:10.1002/qj.1913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tas, E., I. Koren, and O. Altaratz, 2012: On the sensitivity of droplet size relative dispersion to warm cumulus cloud evolution. Geophys. Res. Lett., 39, L13807, doi:10.1029/2012GL052157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, W. D. Hall, and R. M. Rasmussen, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization part I: The single-moment scheme. Atmos. Res., 38, 2962, doi:10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944, doi:10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., H. Xue, W. Fang, and G. Zheng, 2011: A study of shallow cumulus cloud droplet dispersion by large eddy simulations. Acta Meteor. Sin., 25, 166175, doi:10.1007/s13351-011-0024-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2005: Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res., 73, 203223, doi:10.1016/j.atmosres.2004.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108, 4453, doi:10.1029/2002JD003119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 675 212 9
PDF Downloads 630 207 12