The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations

Adele L. Igel Colorado State University, Fort Collins, Colorado

Search for other papers by Adele L. Igel in
Current site
Google Scholar
PubMed
Close
and
Susan C. van den Heever Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this two-part study, relationships between the cloud gamma size distribution shape parameter, microphysical processes, and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, the dependence of the shape parameter (which is closely related to the distribution width) on cloud properties and processes was investigated. However, the distribution width also impacts cloud process rates and in turn cloud properties, and it is this aspect of the relationship that is explored in Part II and is discussed in the context of aerosol–cloud interactions. In simulations with a bulk microphysics scheme, it is found that the evaporation rates are much more sensitive to the value of the shape parameter than to the condensation rates. This is due to changes in both the rate of removal of mass and the rate of removal of fully evaporated droplets. As a result, cloud properties such as droplet number concentration, mean droplet diameter, and cloud fraction are strongly impacted by the value of the shape parameter, particularly in the subsaturated regions of the clouds. These changes can be on the same order of magnitude as changes due to increasing or decreasing the aerosol concentration by a factor of 16. Particular attention is paid to the impact of the shape parameter on cloud albedo. The cloud albedo increases as the shape parameter is increased as a result of the changes in evaporation. The magnitude of the increase is about 4 times larger than previous estimates. However, this increase in cloud albedo is largely offset by a decrease in the cloud fraction, which results in only small increases to the domain-average albedo. Implications for the aerosol relative dispersion effect are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adele L. Igel, aigel@ucdavis.edu

Abstract

In this two-part study, relationships between the cloud gamma size distribution shape parameter, microphysical processes, and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, the dependence of the shape parameter (which is closely related to the distribution width) on cloud properties and processes was investigated. However, the distribution width also impacts cloud process rates and in turn cloud properties, and it is this aspect of the relationship that is explored in Part II and is discussed in the context of aerosol–cloud interactions. In simulations with a bulk microphysics scheme, it is found that the evaporation rates are much more sensitive to the value of the shape parameter than to the condensation rates. This is due to changes in both the rate of removal of mass and the rate of removal of fully evaporated droplets. As a result, cloud properties such as droplet number concentration, mean droplet diameter, and cloud fraction are strongly impacted by the value of the shape parameter, particularly in the subsaturated regions of the clouds. These changes can be on the same order of magnitude as changes due to increasing or decreasing the aerosol concentration by a factor of 16. Particular attention is paid to the impact of the shape parameter on cloud albedo. The cloud albedo increases as the shape parameter is increased as a result of the changes in evaporation. The magnitude of the increase is about 4 times larger than previous estimates. However, this increase in cloud albedo is largely offset by a decrease in the cloud fraction, which results in only small increases to the domain-average albedo. Implications for the aerosol relative dispersion effect are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adele L. Igel, aigel@ucdavis.edu
Save
  • Chen, Y., and J. E. Penner, 2005: Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos. Chem. Phys., 5, 29352948, doi:10.5194/acp-5-2935-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, A. A., C. J. de Oliveira, J. C. P. de Oliveira, and A. J. da Costa Sampaio, 2000: Microphysical observations of warm cumulus clouds in Ceará, Brazil. Atmos. Res., 54, 167199, doi:10.1016/S0169-8095(00)00045-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J.-L. Brenguier, and F. Burnet, 2010: Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes. Atmos. Chem. Phys., 10, 48354848, doi:10.5194/acp-10-4835-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The Effects of Radiative and Microphysical Processes on Simulation of Warm and Transition Season Arctic Stratus. Colorado State University, 289 pp.

  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646673, doi:10.1175/1520-0469(1974)031<0646:FCTSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., H. Jonsson, L.-P. Wang, G. Buzorius, R. C. Flagan, J. H. Seinfeld, and A. Nenes, 2009a: On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. J. Geophys. Res., 114, D07201, doi:10.1029/2008JD010502.

    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., A. Nenes, R. C. Flagan, J. H. Seinfeld, G. Buzorius, and H. Jonsson, 2009b: Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. J. Geophys. Res., 114, D11205, doi:10.1029/2008JD011387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., and S. C. van den Heever, 2017: The importance of the shape of cloud droplet size distributions in shallow cumulus clouds. Part I: Bin microphysics simulations. J. Atmos. Sci., 74, 249258, doi:10.1175/JAS-D-15-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, doi:10.1111/j.2153-3490.1962.tb00128.x.

  • Liu, Y., and P. H. Daum, 2002: Anthropogenic aerosols: Indirect warming effect from dispersion forcing. Nature, 419, 580581, doi:10.1038/419580a.

  • Liu, Y., P. H. Daum, and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33, L02810, doi:10.1029/2005GL024052.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, H. Guo, and Y. Peng, 2008: Dispersion bias, dispersion effect, and the aerosol–cloud conundrum. Environ. Res. Lett., 3, 045021, doi:10.1088/1748-9326/3/4/045021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., and J. H. Seinfeld, 2006: Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing. J. Geophys. Res., 111, D02207, doi:10.1029/2005JD006419.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, doi:10.1029/2006JD007985.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, D15201, doi:10.1029/2007JD009354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., W. W. Grabowski, and J.-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33, L19810, doi:10.1029/2006GL026841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Y., and U. Lohmann, 2003: Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect. Geophys. Res. Lett., 30, 1507, doi:10.1029/2003GL017192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Y., U. Lohmann, R. Leaitch, and M. Kulmala, 2007: An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds. J. Geophys. Res., 112, D11117, doi:10.1029/2006JD007401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. Korolev, and A. Khain, 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra. J. Geophys. Res. Atmos., 119, 12 87212 887, doi:10.1002/2014JD021885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, A. Korolev, and L. Magaritz-Ronen, 2016: Theoretical investigation of mixing in warm clouds—Part 2: Homogeneous mixing. Atmos. Chem. Phys., 16, 92559272, doi:10.5194/acp-16-9255-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Y. Liu, 2003: Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J. Climate, 16, 34763481, doi:10.1175/1520-0442(2003)016<3476:SOTFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, doi:10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281, doi:10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, G. Feingold, and B. Stevens, 2000: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171183, doi:10.1016/S0169-8095(99)00044-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2005: Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res., 73, 203223, doi:10.1016/j.atmosres.2004.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2006: Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett., 33, L16809, doi:10.1029/2006GL026653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108, 4453, doi:10.1029/2002JD003119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 928 378 19
PDF Downloads 754 221 25