A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments

Christina S. McCluskey Colorado State University, Fort Collins, Colorado

Search for other papers by Christina S. McCluskey in
Current site
Google Scholar
PubMed
Close
,
Thomas C. J. Hill Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas C. J. Hill in
Current site
Google Scholar
PubMed
Close
,
Francesca Malfatti Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy

Search for other papers by Francesca Malfatti in
Current site
Google Scholar
PubMed
Close
,
Camille M. Sultana University of California, San Diego, La Jolla, California

Search for other papers by Camille M. Sultana in
Current site
Google Scholar
PubMed
Close
,
Christopher Lee University of California, San Diego, La Jolla, California

Search for other papers by Christopher Lee in
Current site
Google Scholar
PubMed
Close
,
Mitchell V. Santander University of California, San Diego, La Jolla, California

Search for other papers by Mitchell V. Santander in
Current site
Google Scholar
PubMed
Close
,
Charlotte M. Beall University of California, San Diego, La Jolla, California

Search for other papers by Charlotte M. Beall in
Current site
Google Scholar
PubMed
Close
,
Kathryn A. Moore University of California, San Diego, La Jolla, California

Search for other papers by Kathryn A. Moore in
Current site
Google Scholar
PubMed
Close
,
Gavin C. Cornwell University of California, San Diego, La Jolla, California

Search for other papers by Gavin C. Cornwell in
Current site
Google Scholar
PubMed
Close
,
Douglas B. Collins University of California, San Diego, La Jolla, California

Search for other papers by Douglas B. Collins in
Current site
Google Scholar
PubMed
Close
,
Kimberly A. Prather University of California, San Diego, La Jolla, California

Search for other papers by Kimberly A. Prather in
Current site
Google Scholar
PubMed
Close
,
Thilina Jayarathne The University of Iowa, Iowa City, Iowa

Search for other papers by Thilina Jayarathne in
Current site
Google Scholar
PubMed
Close
,
Elizabeth A. Stone The University of Iowa, Iowa City, Iowa

Search for other papers by Elizabeth A. Stone in
Current site
Google Scholar
PubMed
Close
,
Farooq Azam University of California, San Diego, La Jolla, California
Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Farooq Azam in
Current site
Google Scholar
PubMed
Close
,
Sonia M. Kreidenweis Colorado State University, Fort Collins, Colorado

Search for other papers by Sonia M. Kreidenweis in
Current site
Google Scholar
PubMed
Close
, and
Paul J. DeMott Colorado State University, Fort Collins, Colorado

Search for other papers by Paul J. DeMott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Emission rates and properties of ice nucleating particles (INPs) are required for proper representation of aerosol–cloud interactions in atmospheric models. Few investigations have quantified marine INP emissions, a potentially important INP source for remote oceanic regions. Previous studies have suggested INPs in sea spray aerosol (SSA) are linked to oceanic biological activity. This proposed link was explored in this study by measuring INP emissions from nascent SSA during phytoplankton blooms during two mesocosm experiments. In a Marine Aerosol Reference Tank (MART) experiment, a phytoplankton bloom was produced with chlorophyll-a (Chl a) concentrations reaching 39 μg L−1, while Chl a concentrations more representative of natural ocean conditions were obtained during the Investigation into Marine Particle Chemistry and Transfer Science (IMPACTS; peak Chl a of 5 μg L−1) campaign, conducted in the University of California, San Diego, wave flume. Dynamic trends in INP emissions occurred for INPs active at temperatures > −30°C. Increases in INPs active between −25° and −15°C lagged the peak in Chl a in both studies, suggesting a consistent population of INPs associated with the collapse of phytoplankton blooms. Trends in INP emissions were also compared to aerosol composition, abundances of microbes, and enzyme activity. In general, increases in INP concentrations corresponded to increases in organic species in SSA and the emissions of heterotrophic bacteria, suggesting that both microbes and biomolecules contribute to marine INP populations. INP trends were not directly correlated with a single biological marker in either study. Direct measurements of INP chemistry are needed to accurately identify particles types contributing to marine INP populations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0087.s1.

Corresponding author e-mail: Christina McCluskey, mccluscs@atmos.colostate.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

Emission rates and properties of ice nucleating particles (INPs) are required for proper representation of aerosol–cloud interactions in atmospheric models. Few investigations have quantified marine INP emissions, a potentially important INP source for remote oceanic regions. Previous studies have suggested INPs in sea spray aerosol (SSA) are linked to oceanic biological activity. This proposed link was explored in this study by measuring INP emissions from nascent SSA during phytoplankton blooms during two mesocosm experiments. In a Marine Aerosol Reference Tank (MART) experiment, a phytoplankton bloom was produced with chlorophyll-a (Chl a) concentrations reaching 39 μg L−1, while Chl a concentrations more representative of natural ocean conditions were obtained during the Investigation into Marine Particle Chemistry and Transfer Science (IMPACTS; peak Chl a of 5 μg L−1) campaign, conducted in the University of California, San Diego, wave flume. Dynamic trends in INP emissions occurred for INPs active at temperatures > −30°C. Increases in INPs active between −25° and −15°C lagged the peak in Chl a in both studies, suggesting a consistent population of INPs associated with the collapse of phytoplankton blooms. Trends in INP emissions were also compared to aerosol composition, abundances of microbes, and enzyme activity. In general, increases in INP concentrations corresponded to increases in organic species in SSA and the emissions of heterotrophic bacteria, suggesting that both microbes and biomolecules contribute to marine INP populations. INP trends were not directly correlated with a single biological marker in either study. Direct measurements of INP chemistry are needed to accurately identify particles types contributing to marine INP populations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0087.s1.

Corresponding author e-mail: Christina McCluskey, mccluscs@atmos.colostate.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Supplementary Materials

    • Supplemental Materials (DOCX 638.95 KB)
Save
  • Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1996: Ice forming nuclei in the high Arctic. Tellus, 48B, 223233, doi:10.1034/j.1600-0889.1996.t01-1-00007.x.

  • Bigg, E. K., and C. Leck, 2001: Cloud‐active particles over the central Arctic Ocean. J. Geophys. Res., 106, 32 15532 166, doi:10.1029/1999JD901152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T. E., and F. L. Richardson, 1968: The effect of growth environment on the physiology of algae: Light intensity. J. Phycol., 4, 3854, doi:10.1111/j.1529-8817.1968.tb04675.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., C. Hoose, U. Pöschl, and M. G. Lawrence, 2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245267, doi:10.5194/acp-13-245-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, R. E., and Coauthors, 2016: Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol. Environ. Sci. Technol., 50, 24772486, doi:10.1021/acs.est.5b04053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, D. B., and Coauthors, 2014: Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. Atmos. Meas. Tech., 7, 36673683, doi:10.5194/amt-7-3667-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunliffe, M., and Coauthors, 2013: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr., 109, 104116, doi:10.1016/j.pocean.2012.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2015: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, doi:10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eller, P. M., and M. E. Cassinelli, 1999: Elemental carbon (diesel particulate): Method 5040. NIOSH Manual of Analytical Methods, National Institute for Occupational Safety and Health, 9 pp.

  • Facchini, M. C., and Coauthors, 2008: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett., 35, L17814, doi:10.1029/2008GL034210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forestieri, S. D., and Coauthors, 2016: Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments. Atmos. Chem. Phys., 16, 90039018, doi:10.5194/acp-16-9003-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frossard, A. A., L. M. Russell, S. M. Burrows, S. M. Elliott, T. S. Bates, and P. K. Quinn, 2014: Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res. Atmos., 119, 12 97713 003, doi:10.1002/2014JD021913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, E., H. Coe, D. Green, G. de Leeuw, and G. McFiggans, 2010: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—Part 1: Source fluxes. Atmos. Chem. Phys., 10, 92959317, doi:10.5194/acp-10-9295-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gantt, B., N. Meskhidze, M. C. Facchini, M. Rinaldi, D. Ceburnis, and C. D. O’Dowd, 2011: Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol. Atmos. Chem. Phys., 11, 87778790, doi:10.5194/acp-11-8777-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guasco, T. L., and Coauthors, 2014: Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. Environ. Sci. Technol., 48, 13241333, doi:10.1021/es403203d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinds, W. C., 1999: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Wiley, 504 pp.

  • Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, doi:10.5194/acp-15-2489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, 1965: Fluorometric determination of chlorophyll. J. Cons. Int. Explor. Mer, 30, 315, doi:10.1093/icesjms/30.1.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoppe, H. G., 1983: Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser., 11, 299308, doi:10.3354/meps011299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, K., and B. D. Swanson, 2008: High-resolution ice nucleation spectra of sea-ice bacteria: Implications for cloud formation and life in frozen environments. Biogeosciences, 5, 865873, doi:10.5194/bg-5-865-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 8890, doi:10.1038/ngeo1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. Atmos., 119, 33723400, doi:10.1002/2013JD021119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., and Coauthors, 2015: Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop. J. Phys. Chem., 119A, 88608870, doi:10.1021/acs.jpca.5b03488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015: Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys., 15, 12 54712 566, doi:10.5194/acp-15-12547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climatemodels. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mochida, M., Y. Kitamori, K. Kawamura, Y. Nojiri, and K. Suzuki, 2002: Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles. J. Geophys. Res., 107, 4325, doi:10.1029/2001JD001278.

    • Search Google Scholar
    • Export Citation
  • Mongin, M., R. Matear, and M. Chamberlain, 2011: Seasonal and spatial variability of remotely sensed chlorophyll and physical fields in the SAZ-Sense region. Deep-Sea Res. II, 58, 20822093, doi:10.1016/j.dsr2.2011.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. K., and M. R. Abbott, 2000: Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J. Geophys. Res., 105, 28 70928 722, doi:10.1029/1999JC000043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noble, R. T., and J. A. Fuhrman, 1998: Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol., 14, 113118, doi:10.3354/ame014113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and Coauthors, 2004: Biogenically driven organic contributions to marine aerosol. Nature, 431, 676680, doi:10.1038/nature02959.

  • Orellana, M. V., P. A. Matrai, C. Leck, C. D. Rauschenberg, A. M. Lee, and E. Coz, 2011: Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. USA, 108, 13 61213 617, doi:10.1073/pnas.1102457108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J., D. Ceburnis, M. Canagaratna, H. Berresheim, J. Bialek, F. Martucci, D. R. Worsnop, and C. O’Dowd, 2012: On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res., 117, D16201, doi:10.1029/2011JD017379.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. P., and Coauthors, 2016: Sea spray aerosol structure and composition using cryogenic transmission electron microscopy. ACS Cent. Sci., 2, 4047, doi:10.1021/acscentsci.5b00344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, doi:10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. Mcfarquhar, G. Zhang, and M. R. Poellot, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Atmospheric and Oceanographic Services Library, Vol. 18, Springer, 954 pp.

  • Quinn, P. K., D. B. Collins, V. H. Grassian, K. A. Prather, and T. S. Bates, 2015: Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev., 115, 43834399, doi:10.1021/cr500713g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 1998: Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett., 25, 13831386, doi:10.1029/97GL03478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18, 725741, doi:10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romay, F. J., D. L. Roberts, V. A. Marple, B. Y. H. Liu, and B. A. Olson, 2002: A high-performance aerosol concentrator for biological agent detection. Aerosol Sci. Technol., 36, 217226, doi:10.1080/027868202753504074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1987: Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci., 18, 291309, doi:10.1016/0021-8502(87)90024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2009: Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res., 96, 266272, doi:10.1016/j.atmosres.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., 1977: Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: Summer, 1975. J. Atmos. Sci., 34, 12991305, doi:10.1175/1520-0469(1977)034<1299:INISFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., 1982: Airborne ice nucleus measurements around the Hawaiian Islands. J. Geophys. Res., 87, 88868890, doi:10.1029/JC087iC11p08886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1975: Freezing nuclei in marine waters. Tellus, 27A, 321323, doi:10.1111/j.2153-3490.1975.tb01682.x.

  • Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 15541564, doi:10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, M. D., G. B. Deane, K. Prather, T. H. Bertram, M. J. Ruppel, O. S. Ryder, J. M. Brady, and D. Zhao, 2013: A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech., 6, 10851094, doi:10.5194/amt-6-1085-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobo, Y., and Coauthors, 2013: Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res. Atmos., 118, 10 10010 110, doi:10.1002/jgrd.50801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 1971: Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci., 28, 402409, doi:10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler and T. F. Whale, 2015: Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, doi:10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von der Weiden, S. L., F. Drewnick, and S. Borrmann, 2009: Particle loss calculator—A new software tool for the assessment of the performance of aerosol inlet systems. Atmos. Meas. Tech., 2, 479494, doi:10.5194/amt-2-479-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2015: Microbial control of sea spray aerosol composition: A tale of two blooms. ACS Cent. Sci., 1, 124131, doi:10.1021/acscentsci.5b00148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, Y., and J. E. Penner, 2013: An evaluation of the potential radiative forcing and climatic impact of marine organic aerosols as heterogeneous ice nuclei. Geophys. Res. Lett., 40, 41214126, doi:10.1002/grl.50794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelenyuk, A., D. Imre, L. A. Cuadra-Rodriguez, and B. Ellison, 2007: Measurements and interpretation of the effect of a soluble organic surfactant on the density, shape and water uptake of hygroscopic particles. J. Aerosol Sci., 38, 903923, doi:10.1016/j.jaerosci.2007.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2894 1296 269
PDF Downloads 778 199 24