Contributions of Moist Convection and Internal Gravity Waves to Building the Atmospheric −5/3 Kinetic Energy Spectra

Y. Qiang Sun Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Y. Qiang Sun in
Current site
Google Scholar
PubMed
Close
,
Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
, and
Fuqing Zhang Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With high-resolution mesoscale model simulations, the authors have confirmed a recent study demonstrating that convective systems, triggered in a horizontally homogeneous environment, are able to generate a background mesoscale kinetic energy spectrum with a slope close to −5/3, which is the observed value for the kinetic energy spectrum at mesoscales. This shallow slope can be identified at almost all height levels from the lower troposphere to the lower stratosphere in the simulations, implying a strong connection between different vertical levels. The present study also computes the spectral kinetic energy budget for these simulations to further analyze the processes associated with the creation of the spectrum. The buoyancy production generated by moist convection, while mainly injecting energy in the upper troposphere at small scales, could also contribute at larger scales, possibly as a result of the organization of convective cells into mesoscale convective systems. This latter injected energy is then transported by energy fluxes (due to gravity waves and/or convection) both upward and downward. Nonlinear interactions, associated with the velocity advection term, finally help build the approximate −5/3 slope through upscale and/or downscale propagation at all levels.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Professor Fuqing Zhang, fzhang@psu.edu

Abstract

With high-resolution mesoscale model simulations, the authors have confirmed a recent study demonstrating that convective systems, triggered in a horizontally homogeneous environment, are able to generate a background mesoscale kinetic energy spectrum with a slope close to −5/3, which is the observed value for the kinetic energy spectrum at mesoscales. This shallow slope can be identified at almost all height levels from the lower troposphere to the lower stratosphere in the simulations, implying a strong connection between different vertical levels. The present study also computes the spectral kinetic energy budget for these simulations to further analyze the processes associated with the creation of the spectrum. The buoyancy production generated by moist convection, while mainly injecting energy in the upper troposphere at small scales, could also contribute at larger scales, possibly as a result of the organization of convective cells into mesoscale convective systems. This latter injected energy is then transported by energy fluxes (due to gravity waves and/or convection) both upward and downward. Nonlinear interactions, associated with the velocity advection term, finally help build the approximate −5/3 slope through upscale and/or downscale propagation at all levels.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Professor Fuqing Zhang, fzhang@psu.edu
Save
  • Bierdel, L., C. Snyder, S.-H. Park, and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight-track winds. J. Atmos. Sci., 73, 32733286, doi:10.1175/JAS-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, and O. Buhler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, doi:10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and J. D. Barrick, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res., 104, 16 29716 308, doi:10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 20052030, doi:10.1175/1520-0469(1994)051<2005:BDOMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms don’t get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, doi:10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: The mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., K. Hamilton, and J. D. Mahlman, 1999: Simulation of k−5/3 mesoscale spectral regime in the GFDL SKYHI general circulation model. Geophys. Res. Lett., 26, 843846, doi:10.1029/1999GL900128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, doi:10.1017/S0022112005008128.

  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, doi:10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and Y. Zhang, 2014: Mesoscale energy spectra of the mei-yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, doi:10.1175/JAS-D-13-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podglajen, A., A. Hertzog, R. Plougonven, and B. Legras, 2016: Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere. Geophys. Res. Lett., 43, 35433553, doi:10.1002/2016GL068148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, doi:10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selz, T., and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813827, doi:10.1175/MWR-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584, doi:10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, doi:10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, doi:10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, doi:10.1073/pnas.0605494103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, doi:10.1029/GL009i005p00575.

  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2015: Tracking gravity waves in moist baroclinic waves. J. Adv. Model. Earth Syst., 7, 6791, doi:10.1002/2014MS000395.

  • Wei, J., F. Zhang, and J. H. Richter, 2016: An analysis of gravity wave spectral characteristics in moist baroclinic jet–front systems. J. Atmos. Sci., 73, 31333155, doi:10.1175/JAS-D-15-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, doi:10.1175/JAS4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 111 1
PDF Downloads 469 97 3