Sensitivity of Supercell Simulations to Initial-Condition Resolution

Corey K. Potvin Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Corey K. Potvin in
Current site
Google Scholar
PubMed
Close
,
Elisa M. Murillo School of Meteorology, University of Oklahoma, and National Weather Center Research Experiences for Undergraduates, Norman, Oklahoma, and University of Louisiana at Monroe, Monroe, Louisiana

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
,
Montgomery L. Flora School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Montgomery L. Flora in
Current site
Google Scholar
PubMed
Close
, and
Dustan M. Wheatley Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Dustan M. Wheatley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observational and model resolution limitations currently preclude analysis of the smallest scales important to numerical prediction of convective storms. These missing scales can be recovered if the forecast model is integrated on a sufficiently fine grid, but not before errors are introduced that subsequently grow in scale and magnitude. This study is the first to systematically evaluate the impact of these initial-condition (IC) resolution errors on high-resolution forecasts of organized convection. This is done by comparing high-resolution supercell simulations generated using identical model settings but successively coarsened ICs. Consistent with the Warn-on-Forecast paradigm, the simulations are initialized with ongoing storms and integrated for 2 h. Both idealized and full-physics experiments are performed in order to examine how more realistic model settings modulate the error evolution.

In all experiments, scales removed from the IC (wavelengths < 2, 4, 8, or 16 km) regenerate within 10–20 min of model integration. While the forecast errors arising from the initial absence of these scales become quantitatively large in many instances, the qualitative storm evolution is relatively insensitive to the IC resolution. It therefore appears that adopting much finer forecast (e.g., 250 m) than analysis (e.g., 3 km) grids for data assimilation and prediction would improve supercell forecasts given limited computational resources. This motivates continued development of mixed-resolution systems. The relative insensitivity to IC resolution further suggests that convective forecasting can be more readily advanced by improving model physics and numerics and expanding extrastorm observational coverage than by increasing intrastorm observational density.

Corresponding author address: Dr. Corey K. Potvin, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov

Abstract

Observational and model resolution limitations currently preclude analysis of the smallest scales important to numerical prediction of convective storms. These missing scales can be recovered if the forecast model is integrated on a sufficiently fine grid, but not before errors are introduced that subsequently grow in scale and magnitude. This study is the first to systematically evaluate the impact of these initial-condition (IC) resolution errors on high-resolution forecasts of organized convection. This is done by comparing high-resolution supercell simulations generated using identical model settings but successively coarsened ICs. Consistent with the Warn-on-Forecast paradigm, the simulations are initialized with ongoing storms and integrated for 2 h. Both idealized and full-physics experiments are performed in order to examine how more realistic model settings modulate the error evolution.

In all experiments, scales removed from the IC (wavelengths < 2, 4, 8, or 16 km) regenerate within 10–20 min of model integration. While the forecast errors arising from the initial absence of these scales become quantitatively large in many instances, the qualitative storm evolution is relatively insensitive to the IC resolution. It therefore appears that adopting much finer forecast (e.g., 250 m) than analysis (e.g., 3 km) grids for data assimilation and prediction would improve supercell forecasts given limited computational resources. This motivates continued development of mixed-resolution systems. The relative insensitivity to IC resolution further suggests that convective forecasting can be more readily advanced by improving model physics and numerics and expanding extrastorm observational coverage than by increasing intrastorm observational density.

Corresponding author address: Dr. Corey K. Potvin, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, doi:10.1175/JAS-D-12-0166.1.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dong, J., M. Xue, and K. Droegemeier, 2011: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter. Meteor. Atmos. Phys., 112, 4161, doi:10.1007/s00703-011-0130-3.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, doi:10.1175/JAS-D-14-0007.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, doi:10.1175/BAMS-D-15-00070.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fiori, E., A. Parodi, and F. Siccardi, 2010: Turbulence closure parameterization and grid spacing effects in simulated supercell storms. J. Atmos. Sci., 67, 38703890, doi:10.1175/2010JAS3359.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945963, doi:10.1175/2007MWR2120.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, doi:10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-Hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., and R. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29, 10411058, doi:10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., M. F. Barth, L. A. Benjamin, R. S. Artz, and W. R. Pendergrass, 2007: MADIS support for UrbaNet. 14th Symp. on Meteorological Observation and Instrumentation/16th Conf. on Applied Climatology, San Antonio, TX, Amer. Meteor. Soc., JP2.5. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_119116.htm.]

  • Potvin, C. K., and L. J. Wicker, 2013a: Assessing ensemble forecasts of low-level supercell rotation within an OSSE framework. Wea. Forecasting, 28, 940960, doi:10.1175/WAF-D-12-00122.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and L. J. Wicker, 2013b: Correcting fast-mode pressure errors in storm-scale ensemble Kalman filter analyses. Adv. Meteor., 2013, 624931, doi:10.1155/2013/624931.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, doi:10.1175/MWR-D-14-00416.1.

    • Search Google Scholar
    • Export Citation
  • Rainwater, S., and B. Hunt, 2013: Mixed-resolution ensemble data assimilation. Mon. Wea. Rev., 141, 30073021, doi:10.1175/MWR-D-12-00234.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., 1988: High-order low-pass implicit tangent filters for use in finite area calculations. Mon. Wea. Rev., 116, 21322141, doi:10.1175/1520-0493(1988)116<2132:HOLPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, doi:10.1175/WAF-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, doi:10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. R. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, T. E., L. J. Wicker, X. Wang, and C. K. Potvin, 2015: A comparison between the local ensemble transform Kalman filter and the ensemble square root filter for the assimilation of radar data in convective-scale models. Quart. J. Roy. Meteor. Soc., 141, 11631176, doi:10.1002/qj.2423.

    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parameterization. Quart. J. Roy. Meteor. Soc., 141, 433448, doi:10.1002/qj.2363.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2008: On the predictability of mesoscale convective systems: Two-dimensional simulations. Wea. Forecasting, 23, 773785, doi:10.1175/2008WAF2007057.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, doi:10.1175/2009MWR2961.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, doi:10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 627 pp.

  • Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149166, doi:10.1175/WAF909.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, D. Stensrud, and Z. Meng, 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 12731298, doi:10.1175/MWR-D-15-0105.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 123 17
PDF Downloads 325 95 10