Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results

Rolando R. Garcia National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
,
Anne K. Smith National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anne K. Smith in
Current site
Google Scholar
PubMed
Close
,
Douglas E. Kinnison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Douglas E. Kinnison in
Current site
Google Scholar
PubMed
Close
,
Álvaro de la Cámara National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Álvaro de la Cámara in
Current site
Google Scholar
PubMed
Close
, and
Damian J. Murphy Australian Antarctic Division, Hobart, Tasmania, Australia

Search for other papers by Damian J. Murphy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The current standard version of the Whole Atmosphere Community Climate Model (WACCM) simulates Southern Hemisphere winter and spring temperatures that are too cold compared with observations. This “cold-pole bias” leads to unrealistically low ozone column amounts in Antarctic spring. Here, the cold-pole problem is addressed by introducing additional mechanical forcing of the circulation via parameterized gravity waves. Insofar as observational guidance is ambiguous regarding the gravity waves that might be important in the Southern Hemisphere stratosphere, the impact of increasing the forcing by orographic gravity waves was investigated. This reduces the strength of the Antarctic polar vortex in WACCM, bringing it into closer agreement with observations, and accelerates the Brewer–Dobson circulation in the polar stratosphere, which warms the polar cap and improves substantially the simulation of Antarctic temperature. These improvements are achieved without degrading the performance of the model in the Northern Hemisphere stratosphere or in the mesosphere and lower thermosphere of either hemisphere. It is shown, finally, that other approaches that enhance gravity wave forcing can also reduce the cold-pole bias such that careful examination of observational evidence and model performance will be required to establish which gravity wave sources are dominant in the real atmosphere. This is especially important because a “downward control” analysis of these results suggests that the improvement of the cold-pole bias itself is not very sensitive to the details of how gravity wave drag is altered.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Rolando R. Garcia, rgarcia@ucar.edu

Abstract

The current standard version of the Whole Atmosphere Community Climate Model (WACCM) simulates Southern Hemisphere winter and spring temperatures that are too cold compared with observations. This “cold-pole bias” leads to unrealistically low ozone column amounts in Antarctic spring. Here, the cold-pole problem is addressed by introducing additional mechanical forcing of the circulation via parameterized gravity waves. Insofar as observational guidance is ambiguous regarding the gravity waves that might be important in the Southern Hemisphere stratosphere, the impact of increasing the forcing by orographic gravity waves was investigated. This reduces the strength of the Antarctic polar vortex in WACCM, bringing it into closer agreement with observations, and accelerates the Brewer–Dobson circulation in the polar stratosphere, which warms the polar cap and improves substantially the simulation of Antarctic temperature. These improvements are achieved without degrading the performance of the model in the Northern Hemisphere stratosphere or in the mesosphere and lower thermosphere of either hemisphere. It is shown, finally, that other approaches that enhance gravity wave forcing can also reduce the cold-pole bias such that careful examination of observational evidence and model performance will be required to establish which gravity wave sources are dominant in the real atmosphere. This is especially important because a “downward control” analysis of these results suggests that the improvement of the cold-pole bias itself is not very sensitive to the details of how gravity wave drag is altered.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Rolando R. Garcia, rgarcia@ucar.edu
Save
  • Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett., 42, 68606867, doi:10.1002/2015GL065234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, doi:10.1002/2013JD020526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., K. Sato, S. Watanabe, Y. Kawatani, and D. J. Murphy, 2016: Southern Hemisphere extratropical gravity wave sources and intermittency revealed by a middle-atmosphere general circulation model. J. Atmos. Sci., 73, 13351349, doi:10.1175/JAS-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, doi:10.1029/2004JD005504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 37803798, doi:10.1175/JAS-D-12-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2014: What drives the Brewer–Dobson circulation? J. Atmos. Sci., 71, 38373855, doi:10.1175/JAS-D-14-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De la Cámara, A., F. Lott, V. Jewtoukoff, R. Plougonven, and A. Hertzog, 2016: On the gravity wave forcing during the southern stratospheric final warming in LMDZ. J. Atmos. Sci., 73, 32133226, doi:10.1175/JAS-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De la Torre, L., R. R. Garcia, D. Barriopedro, and A. Chandran, 2012: Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D04110, doi:10.1029/2011JD016840.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2012: Gravity wave momentum flux spectra observed from satellite in the summertime subtropics: Implications for global modeling. Geophys. Res. Lett., 39, L15810, doi:10.1029/2012GL052659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., M. López-Puertas, B. Funke, D. R. Marsh, D. E. Kinnison, A. K. Smith, and F. González-Galindo, 2014: On the distribution of CO2 and CO in the mesosphere and lower thermosphere. J. Geophys. Res. Atmos., 119, 57005718, doi:10.1002/2013JD021208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. D. Doyle, S. D. Eckermann, Q. Jiang, and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, doi:10.1175/JAS-D-13-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., M. J. Alexander, and R. Plougonven, 2012: On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, doi:10.1175/JAS-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hervig, M. E., M. H. Stevens, L. L. Gordley, L. E. Deaver, J. M. Russell III, and S. M. Bailey, 2009: Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations. J. Geophys. Res., 114, D20203, doi:10.1029/2009JD012302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., C. J. Wright, N. D. Smith, and N. J. Mitchell, 2015: The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys., 15, 77977818, doi:10.5194/acp-15-7797-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave momentum drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, doi:10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Cámara, and F. Lott, 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34492468, doi:10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, A., L. L. Pan, P. Konopka, D. E. Kinnison, and S. Tilmes, 2011: Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. J. Geophys. Res., 116, D24302, doi:10.1029/2011JD016686.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2012: CAM-Chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, doi:10.5194/gmd-5-369-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., 2011: Chemical–dynamical coupling in the mesosphere and lower thermosphere. Aeronomy of the Earth’s Atmosphere and Ionosphere, M. A. Abdu, D. Pancheva, and A. Bhattacharyya, Eds., IAGA Special Sopron Book Series, Vol. 2, Springer, 3–17, doi:10.1007/978-94-007-0326-1_1.

    • Crossref
    • Export Citation
  • Marsh, D. R., M. E. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013a: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., D. Janches, W. Feng, and J. M. C. Plane, 2013b: A global model of meteoric sodium. J. Geophys. Res. Atmos., 118, 11 44211 452, doi:10.1002/jgrd.50870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavaparu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, A., P. Hitchcock, and P. Haynes, 2016: The response of the lower stratosphere to zonally symmetric thermal and mechanical forcing. J. Atmos. Sci., 73, 19031922, doi:10.1175/JAS-D-15-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., J. Richter, S. Park, P. Lauritzen, S. Vavrus, P. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperatures, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, doi:10.1029/2008JD010013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Towards a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, doi:10.1175/JAS-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc, 126, 23532393, doi:10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibuya, R., K. Sato, Y. Tomikawa, M. Tsutsumi, and T. Sato, 2015: A study of multiple tropopause structures caused by inertia– gravity waves in the Antarctic. J. Atmos. Sci., 72, 21092130, doi:10.1175/JAS-D-14-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and T. G. Shepherd, 2014: Compensation between resolved wave driving and parameterized orographic gravity wave driving of the Brewer–Dobson circulation and its response to climate change. J. Climate, 27, 56015610, doi:10.1175/JCLI-D-13-00644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., R. R. Garcia, D. R. Marsh, and J. H. Richter, 2011: WACCM simulations of the mean meridional circulation and trace species transport in the winter mesosphere. J. Geophys. Res., 116, D20115, doi:10.1029/2011JD016083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, doi:10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Kinnison, J. Bandoro, and R. Garcia, 2015: Simulation of polar ozone depletion: An update. J. Geophys. Res. Space Phys., 120, 21832193, doi:10.1002/2014JA020886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegner, T., D. E. Kinnison, R. R. Garcia, and S. Solomon, 2013: Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. J. Geophys. Res. Atmos., 118, 49915002, doi:10.1002/jgrd.50415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., S. M. Osprey, and J. C. Gille, 2013: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. Atmos., 118, 10 98010 993, doi:10.1002/jgrd.50869.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1213 352 25
PDF Downloads 1000 247 15