Tropical Cyclone Outflow-Layer Structure and Balanced Response to Eddy Forcings

Sarah D. Ditchek Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Sarah D. Ditchek in
Current site
Google Scholar
PubMed
Close
,
John Molinari Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by John Molinari in
Current site
Google Scholar
PubMed
Close
, and
David Vollaro Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by David Vollaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ERA-Interim is used to generate azimuthally averaged composites of Atlantic basin tropical cyclones from 1979 to 2014. Both the mean state and the eddy forcing terms exhibited similar radial–vertical structure for all storm intensities, varying only in magnitude. Thus, only major hurricanes are described in detail. Radial inflow and outflow extended beyond the 2000-km radius. Warm anomalies reached 2000 km in the outflow layer. Composite eddy momentum fluxes within the outflow layer were 2.5 times larger than mean momentum fluxes, highlighting the importance of outflow–environment interactions. A balanced vortex equation was applied to understand the role of eddy heat and momentum fluxes. Dominant terms were the lateral eddy heat flux convergence, lateral eddy momentum flux, and eddy Coriolis torque. Each acted to enhance the secondary circulation. The eddy momentum flux terms produced about twice the response of heat flux terms. The circulation created by the eddy Coriolis torque arises from a vertical gradient of mean storm-relative meridional wind in the upper troposphere at outer radii. It is produced by background inertial stability variations that allow stronger outflow on the equatorward side. Overall, the fluxes drive a strengthened secondary circulation that extends to outer radii. Balanced vertical motion is strongest in the upper troposphere in the storm core. A method is proposed for evaluating the role of environmental interaction on tropical cyclone intensity change.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sarah D. Ditchek, sarahditchek@gmail.com

Abstract

The ERA-Interim is used to generate azimuthally averaged composites of Atlantic basin tropical cyclones from 1979 to 2014. Both the mean state and the eddy forcing terms exhibited similar radial–vertical structure for all storm intensities, varying only in magnitude. Thus, only major hurricanes are described in detail. Radial inflow and outflow extended beyond the 2000-km radius. Warm anomalies reached 2000 km in the outflow layer. Composite eddy momentum fluxes within the outflow layer were 2.5 times larger than mean momentum fluxes, highlighting the importance of outflow–environment interactions. A balanced vortex equation was applied to understand the role of eddy heat and momentum fluxes. Dominant terms were the lateral eddy heat flux convergence, lateral eddy momentum flux, and eddy Coriolis torque. Each acted to enhance the secondary circulation. The eddy momentum flux terms produced about twice the response of heat flux terms. The circulation created by the eddy Coriolis torque arises from a vertical gradient of mean storm-relative meridional wind in the upper troposphere at outer radii. It is produced by background inertial stability variations that allow stronger outflow on the equatorward side. Overall, the fluxes drive a strengthened secondary circulation that extends to outer radii. Balanced vertical motion is strongest in the upper troposphere in the storm core. A method is proposed for evaluating the role of environmental interaction on tropical cyclone intensity change.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sarah D. Ditchek, sarahditchek@gmail.com
Save
  • Anthes, R. A., 1974: The dynamics and energetics of mature tropical cyclones. Rev. Geophys. Space Phys., 12, 495522, doi:10.1029/RG012i003p00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977a: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977b: The structure and energetics of the tropical cyclone II. Dynamics and energetics. Mon. Wea. Rev., 105, 11361150, doi:10.1175/1520-0493(1977)105<1136:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sci., 38, 11171131, doi:10.1175/1520-0469(1981)038<1117:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, doi:10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918, doi:10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 23932398, doi:10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, doi:10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, doi:10.1175/2011JCLI4208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169186, doi:10.1080/00431672.1974.9931702.

  • Smith, R. K., M. T. Montgomery, and J. Persing, 2014: On steady-state tropical cyclones. Quart. J. Roy. Meteor. Soc., 140, 26382649, doi:10.1002/qj.2329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 535 99 16
PDF Downloads 331 66 10