Saharan Dust and the Nonlinear Evolution of the African Easterly Jet–African Easterly Wave System

Dustin F. P. Grogan Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Dustin F. P. Grogan in
Current site
Google Scholar
PubMed
Close
,
Terrence R. Nathan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
, and
Shu-Hua Chen Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Shu-Hua Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The direct radiative effects of Saharan mineral dust (SMD) aerosols on the nonlinear evolution of the African easterly jet–African easterly wave (AEJ–AEW) system is examined using the Weather Research and Forecasting Model coupled to an online dust model. The SMD-modified AEW life cycles are characterized by four stages: enhanced linear growth, weakened nonlinear stabilization, larger peak amplitude, and smaller long-time amplitude. During the linear growth and nonlinear stabilization stages, the SMD increases the generation of eddy available potential energy (APE); this occurs where the maximum in the mean meridional SMD gradient is coincident with the critical surface. As the AEWs evolve beyond the nonlinear stabilization stage, the discrimination between SMD particle sizes due to sedimentation becomes more pronounced; the finer particles meridionally expand, while the coarser particles settle to the surface. The result is a reduction in the eddy APE at the base and the top of the plume.

The SMD enhances the Eliassen–Palm (EP) flux divergence and residual-mean meridional circulation, which generally oppose each other throughout the AEW life cycle. The SMD-modified residual-mean meridional circulation initially dominates to accelerate the flow but quickly surrenders to the EP flux divergence, which causes an SMD-enhanced deceleration of the AEJ during the linear growth and nonlinear stabilization stages. Throughout the AEW life cycle, the SMD-modified AEJ is elevated and the peak winds are larger than without SMD. During the first (second) half of the AEW life cycle, the SMD-modified wave fluxes shift the AEJ axis farther equatorward (poleward) of its original SMD-free position.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Dustin Grogan, Department of Atmospheric and Environmental Sciences, 1400 Washington Ave., University at Albany, State University of New York, Albany, NY 12222. E-mail: dgrogan@albany.edu

Abstract

The direct radiative effects of Saharan mineral dust (SMD) aerosols on the nonlinear evolution of the African easterly jet–African easterly wave (AEJ–AEW) system is examined using the Weather Research and Forecasting Model coupled to an online dust model. The SMD-modified AEW life cycles are characterized by four stages: enhanced linear growth, weakened nonlinear stabilization, larger peak amplitude, and smaller long-time amplitude. During the linear growth and nonlinear stabilization stages, the SMD increases the generation of eddy available potential energy (APE); this occurs where the maximum in the mean meridional SMD gradient is coincident with the critical surface. As the AEWs evolve beyond the nonlinear stabilization stage, the discrimination between SMD particle sizes due to sedimentation becomes more pronounced; the finer particles meridionally expand, while the coarser particles settle to the surface. The result is a reduction in the eddy APE at the base and the top of the plume.

The SMD enhances the Eliassen–Palm (EP) flux divergence and residual-mean meridional circulation, which generally oppose each other throughout the AEW life cycle. The SMD-modified residual-mean meridional circulation initially dominates to accelerate the flow but quickly surrenders to the EP flux divergence, which causes an SMD-enhanced deceleration of the AEJ during the linear growth and nonlinear stabilization stages. Throughout the AEW life cycle, the SMD-modified AEJ is elevated and the peak winds are larger than without SMD. During the first (second) half of the AEW life cycle, the SMD-modified wave fluxes shift the AEJ axis farther equatorward (poleward) of its original SMD-free position.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Dustin Grogan, Department of Atmospheric and Environmental Sciences, 1400 Washington Ave., University at Albany, State University of New York, Albany, NY 12222. E-mail: dgrogan@albany.edu
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and C. B. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, doi:10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the Eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, doi:10.1029/2010JD014158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., Y.-C. Liu, T. R. Nathan, C. Davis, R. Torn, N. Sowa, C.-T. Cheng, and J.-P. Chen, 2015: Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 141, 25632570, doi:10.1002/qj.2542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007: A modeling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133, 283297, doi:10.1002/qj.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, doi:10.1016/j.atmosres.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, Vol. 15, 40 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, Vol. 19, 102 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou137.pdf.]

  • Colarco, P. R., E. P. Nowottnick, C. A. Randles, B. Yi, P. Yang, K.-M. Kim, J. A. Smith, and C. G. Bardeen, 2014: Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos, 119, 753786, doi:10.1002/2013JD020046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornforth, R. J., B. J. Hoskins, and C. D. Thorncroft, 2009: The impact of moist processes on the African easterly jet—African easterly wave system. Quart. J. Roy. Meteor. Soc., 135, 894913, doi:10.1002/qj.414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuesta, J., J. H. Marsham, D. J. Parker, and C. Flamant, 2009: Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos. Sci. Lett., 10, 3442, doi:10.1002/asl.207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., and S. E. Nicholson, 2011: A note on long-term variations of the African easterly jet. Int. J. Climatol., 31, 20492054, doi:10.1002/joc.2209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2015: Absolute and convective instability of the African easterly jet. J. Atmos. Sci., 72, 18051826, doi:10.1175/JAS-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112, D03103, doi:10.1029/2006JD007195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future African dust. Nature, 531, 493495, doi:10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielder, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen, 2013: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos., 118, 61006121, doi:10.1002/jgrd.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., 2002: Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet and dry years. Mon. Wea. Rev., 130, 197211, doi:10.1175/1520-0493(2002)130<0197:EWOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2016: Effect of Saharan dust on the linear dynamics of African easterly waves. J. Atmos. Sci., 73, 891911, doi:10.1175/JAS-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, doi:10.1175/JAS3742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic Press, 535 pp.

  • Hosseinpour, F., and E. M. Wilcox, 2014: Aerosol interactions with African/Atlantic climate dynamics. Environ. Res. Lett., 9, 075004, doi:10.1088/1748-9326/9/7/075004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, doi:10.1175/MWR2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, doi:10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31, L17208, doi:10.1029/2004GL020107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and M. J. Santiago, 2010: Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era. Geophys. Res. Lett., 115, D16213, doi:10.1029/2009JD013612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, doi:10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10461075, doi:10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klüser, L., and T. Holzer-Popp, 2010: Relationships between mineral dust and cloud properties in the West African Sahel. Atmos. Chem. Phys., 10, 69016915, doi:10.5194/acp-10-6901-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implication for modeling. Rev. Geophys., 50, RG1007, doi:10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, J. F., 2011: A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA, 108, 10161021, doi:10.1073/pnas.1014798108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konare, A., A. S. Zakey, F. Solmon, F. Giorgi, S. Rauscher, S. Ibrah, and X. Bi, 2008: A regional climate modeling study of the effect of desert dust on the West African monsoon. J. Geophys. Res., 113, D12206, doi:10.1029/2007JD009322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, S., and N. M. J. Hall, 2009: On the relationship between African easterly waves and the African easterly jet. J. Atmos. Sci., 66, 23032316, doi:10.1175/2009JAS2988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., K. Zhang, J. J. Shi, T. Matsui, and A. Arking, 2012: Direct radiative effect of mineral dust on the development of African easterly waves. J. Appl. Meteor. Climatol., 51, 20902104, doi:10.1175/JAMC-D-11-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, doi:10.1175/JCLI3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merkine, L.-O., 1978: A note on the finite amplitude dynamics of spatially growing baroclinic waves on an f-plane. Tellus, 30, 477486, doi:10.1111/j.2153-3490.1978.tb00865.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 32473267, doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, C., and I. Chiapello, 2004: Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel source from TOMS satellites (1979–2000). Geophys. Res. Lett., 31, L02107, doi:10.1029/2003GL018931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., 1993: Nonlinear evolution of spatially growing baroclinic waves. Geophys. Astrophys. Fluid Dyn., 68, 1535, doi:10.1080/03091929308203560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., 1998: Nonlinear spatial baroclinic instability in slowly varying zonal flow. Dyn. Atmos. Oceans, 27, 8190, doi:10.1016/S0377-0265(97)00002-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342, doi:10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1970: Finite amplitude baroclinic waves. J. Atmos. Sci., 27, 1530, doi:10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Poan, D. E., J.-P. Lafore, R. Roehrig, and F. Couvreux, 2015: Internal processes within the African easterly wave system. Quart. J. Roy. Meteor. Soc., 141, 11211136, doi:10.1002/qj.2420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of an interactive aerosol on the African easterly jet in the NASA GOES-5 global forecasting system. Wea. Forecasting, 26, 504519, doi:10.1175/WAF-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., E. Klinker, and A. Hollingsworth, 1988: The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys., 38, 2233, doi:10.1007/BF01029944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwanghart, W., and B. Schütt, 2008: Meteorological causes of Harmattan dust in West Africa. Geomorphology, 95, 412428, doi:10.1016/j.geomorph.2007.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., 1995: An idealized study of African easterly waves. III: More realistic basic states. Quart. J. Roy. Meteor. Soc., 121, 15891614, doi:10.1002/qj.49712152706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994a: An idealized study of African easterly waves. I: Linear theory. Quart. J. Roy. Meteor. Soc., 120, 953982, doi:10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994b: An idealized study of African easterly waves. II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120, 9831015, doi:10.1002/qj.49712051810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, doi:10.1175/2008JAS2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J.-J. Morcette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32, L10801, doi:10.1029/2004GL022189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulet, P., M. Mallet, V. Pont, J. Pelon, and A. Boone, 2008: The 7–13 March 2006 dust storm over West Africa: Generation, transport, and vertical stratification. J. Geophys. Res., 113, D00C08, doi:10.1029/2008JD009871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westphal, D. L., O. B. Toon, and T. N. Carlson, 1988: A case study of mobilization and transport of Saharan dust. J. Atmos. Sci., 45, 21452175, doi:10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 59 0
PDF Downloads 114 34 1