Generation of Gravity Waves by Singular Potential Vorticity Disturbances in Shear Flows

Maxim V. Kalashnik A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Maxim V. Kalashnik in
Current site
Google Scholar
PubMed
Close
and
Otto Chkhetiani A. M. Obukhov Institute of Atmospheric Physics, and Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Otto Chkhetiani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linear mechanism of generation of gravity waves by potential vorticity (PV) disturbances in flows with constant horizontal and vertical shears is studied. The case of the initial singular distribution of PV, in which the PV is localized in one coordinate and is periodic with respect to other coordinates, is considered. In a stratified rotating medium, such a distribution induces a vortex wave (continuous mode), the propagation of which is accompanied by the emission of gravity waves. To find the emission characteristics, a linearized system of dynamical equations is reduced to wave equations with sources that are proportional to the initial distributions of PV. The asymptotic solutions of the equations are constructed for small Rossby numbers (horizontal shear) and large Richardson numbers (vertical shear). When passing through the inertial levels symmetrically located with respect to a vortex source, the behavior of the solutions for wave amplitudes radically changes. Directly in the vicinity of the source, the solutions are of monotonic character, corresponding to a quasigeostrophic vortex wave. At long distances from the source, the solutions oscillate. The horizontal momentum flux and the Eliassen–Palm flux are estimated using asymptotic solutions. It is found that, within the indicated range of both Rossby and Richardson numbers, these fluxes are exponentially small: that is, the emission of waves is weak.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Otto G. Chkhetiani, ochkheti@gmail.com

Abstract

The linear mechanism of generation of gravity waves by potential vorticity (PV) disturbances in flows with constant horizontal and vertical shears is studied. The case of the initial singular distribution of PV, in which the PV is localized in one coordinate and is periodic with respect to other coordinates, is considered. In a stratified rotating medium, such a distribution induces a vortex wave (continuous mode), the propagation of which is accompanied by the emission of gravity waves. To find the emission characteristics, a linearized system of dynamical equations is reduced to wave equations with sources that are proportional to the initial distributions of PV. The asymptotic solutions of the equations are constructed for small Rossby numbers (horizontal shear) and large Richardson numbers (vertical shear). When passing through the inertial levels symmetrically located with respect to a vortex source, the behavior of the solutions for wave amplitudes radically changes. Directly in the vicinity of the source, the solutions are of monotonic character, corresponding to a quasigeostrophic vortex wave. At long distances from the source, the solutions oscillate. The horizontal momentum flux and the Eliassen–Palm flux are estimated using asymptotic solutions. It is found that, within the indicated range of both Rossby and Richardson numbers, these fluxes are exponentially small: that is, the emission of waves is weak.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Otto G. Chkhetiani, ochkheti@gmail.com
Save
  • Abramowitz, M., and I. A. Stegun, 1964: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. 9th ed. Dover, 1046 pp.

  • Alexander, M. J., 2003: Gravity wave fluxes. Encyclopedia of Atmospheric Sciences, Elsevier Science Ltd., 137–152, doi:10.1016/b0-12-227090-8/00309-2.

    • Crossref
    • Export Citation
  • Baines, P. G., 1998: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Bakas, N. A., and B. F. Farrell, 2009a: Gravity waves in a horizontal shear flow. Part I: Growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr., 39, 481496, doi:10.1175/2008JPO3836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and B. F. Farrell, 2009b: Gravity waves in a horizontal shear flow. Part II: Interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr., 39, 497511, doi:10.1175/2008JPO3837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedard, A., 2005: Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Wea. Rev., 133, 241263, doi:10.1175/MWR-2851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1972: Geostrophic adjustment. Rev. Geophys., 10, 485528, doi:10.1029/RG010i002p00485.

  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, doi:10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., and O. G. Chkhetiani, 1995: Linear transformation of Rossby waves in shear flows. J. Exp. Theor. Phys. Lett., 62, 314321.

    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., G. R. Khujadze, J. G. Lominadze, and A. D. Rogava, 1997a: Acoustic waves in unbounded shear flows. Phys. Fluids, 9, 19551962, doi:10.1063/1.869314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., A. G. Tevzadze, G. Bodo, and S. S. Moiseev, 1997b: Linear mechanism of wave emergence from vortices in smooth shear flows. Phys. Rev. Lett., 79, 3178, doi:10.1103/PhysRevLett.79.3178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedoryuk, M. V., 1993: Asymptotic Analysis: Linear Ordinary Differential Equations. Springer-Verlag, 363 pp., doi:10.1007/978-3-642-58016-1_1.

    • Crossref
    • Export Citation
  • Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, doi:10.1017/S0022112094002946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Z. Luo, 1992: Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: Two-dimensional forcing. J. Atmos. Sci., 49, 681697, doi:10.1175/1520-0469(1992)049<0681:GWEBGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Howe, M. S., 2003: Theory of Vortex Sound. Cambridge Texts in Applied Mathematics, Vol. 33, Cambridge University Press, 232 pp., doi:10.1017/cbo9780511755491.

    • Crossref
    • Export Citation
  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439448, doi:10.1017/S0022112067001521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., D. G. Lominadze, and G. D. Chagelishvili, 2005: Linear dynamics of perturbations in flows with constant horizontal shear. Fluid Dyn., 40, 854864, doi:10.1007/s10697-006-0002-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., G. R. Mamatsashvili, G. D. Chagelishvili, and J. G. Lominadze, 2006: Linear dynamics of non-symmetric perturbations in geostrophic horizontal shear flows. Quart. J. Roy. Meteor. Soc., 132, 505518, doi:10.1256/qj.04.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kópev, V., and E. Leontev, 1983: Acoustic instability of an axial vortex. Sov. Phys. Acoust., 29, 111115.

  • Langer, R. E., 1949: The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point. Trans. Amer. Math. Soc., 67, 461490, doi:10.1090/S0002-9947-1949-0033420-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1952: On sound generated aerodynamically. I. General theory. Philos. Trans. Roy. Soc. London, A211, 564587, doi:10.1098/rspa.1952.0060.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. A., 1990: Dynamics in Atmospheric Physics. Cambridge University Press, 324 pp., doi:10.1017/cbo9780511608285.

    • Crossref
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2010: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci., 67, 157170, doi:10.1175/2009JAS3134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2012: Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci., 69, 21342151, doi:10.1175/JAS-D-11-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 2011: Atmospheric Dynamics. Cambridge University Press, 500 pp., doi:10.1017/cbo9780511762031.

    • Crossref
    • Export Citation
  • Mamatsashvili, G. R., V. S. Avsarkisov, G. D. Chagelishvili, R. G. Chanishvili, and M. V. Kalashnik, 2010: Transient dynamics of nonsymmetric perturbations versus symmetric instability in baroclinic zonal shear flows. J. Atmos. Sci., 67, 29722989, doi:10.1175/2010JAS3313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayfeh, A. H., 1973: Perturbation Methods. John Wiley & Sons, 437 pp., doi:10.1002/9783527617609.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp., doi:10.1007/978-1-4612-4650-3.

    • Crossref
    • Export Citation
  • Plougonven, R., and V. Zeitlin, 2002: Internal gravity wave emission from a pancake vortex: An example of wave–vortex interaction in strongly stratified flows. Phys. Fluids, 14, 12591268, doi:10.1063/1.1448297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, doi:10.1002/2012RG000419.

  • Plougonven, R., D. J. Muraki, and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62, 15451559, doi:10.1175/JAS3426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1997: Numerical modelling of inertia–gravity wave emission by fronts and jets. Gravity Wave Processes: Their Parameterization in Global Climate Models, K. Hamilton, Ed., NATO ASI Series, Vol. 50, Springer Berlin Heidelberg, 137–152, doi:10.1007/978-3-642-60654-0_10.

    • Crossref
    • Export Citation
  • Reznik, G. M., V. Zeitlin, and M. B. Jelloul, 2001: Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech., 445, 93120, doi:10.1017/S002211200100550X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1937: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. J. Mar. Res., 1, 1527.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2008: The spontaneous imbalance of an atmospheric vortex at high Rossby number. J. Atmos. Sci., 65, 24982521, doi:10.1175/2007JAS2490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435456, doi:10.1175/JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, W., 1887: Stability of fluid motion—Rectilinear motion of viscous fluid between two parallel plates. Philos. Mag., 24, 188196, doi:10.1080/14786448708628078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2008: Exponential smallness of inertia–gravity wave generation at small Rossby number. J. Atmos. Sci., 65, 16221637, doi:10.1175/2007JAS2494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, doi:10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. Haine, and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 35433556, doi:10.1175/2008JAS2480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 1991: On the backreaction of acoustic radiation for distributed two-dimensional vortex structures. Phys. Fluids, 3, 16771680, doi:10.1063/1.857947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 2008: Decoupling of balanced and unbalanced motions and inertia–gravity wave emission: Small versus large Rossby numbers. J. Atmos. Sci., 65, 35283542, doi:10.1175/2008JAS2481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., G. M. Reznik, and M. B. Jelloul, 2003: Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. J. Fluid Mech., 491, 207228, doi:10.1017/S0022112003005457.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 63 3
PDF Downloads 128 42 2