The Simulated Response of Diurnal Mountain Winds to Regionally Enhanced Warming Caused by the Snow Albedo Feedback

Theodore W. Letcher University at Albany, State University of New York, Albany, New York

Search for other papers by Theodore W. Letcher in
Current site
Google Scholar
PubMed
Close
and
Justin R. Minder University at Albany, State University of New York, Albany, New York

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The snow albedo feedback (SAF) is an important climate feature of mountain regions with transient snow cover. In these regions, where patterns of snow cover are largely determined by the underlying terrain, the SAF is highly variable in space and time. Under climate warming, these variations may affect the development of diurnal mountain winds either by altering the thermal contrast between high and low elevations or by increasing boundary layer mixing. In this study, high-resolution regional climate modeling experiments are used to investigate and characterize how the SAF modulates changes in diurnal wind systems in the Rocky Mountains of Colorado and Utah during the spring when SAF strength is at a maximum. Two separate 7-yr pseudo–global warming climate change experiments with differing model configurations are examined. An evaluation of the control simulations against a mesoscale network of observations reveals that the models perform reasonably well at simulating diurnal mountain winds within this region. In the experiment with a strong SAF, there is a clear increase in the strength of daytime upslope flow under climate warming, which leads to increased convergence and cloudiness near the snow margin. Additionally, there is a decrease in the strength of nighttime downslope flows. In the simulation with a weaker SAF, the results are generally similar but less pronounced. In both experiments, an altered thermal contrast, rather than increased boundary layer mixing, appears to be the primary mechanism driving changes in diurnal mountain wind systems in this region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Theodore Letcher, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: tletcher@albany.edu

Abstract

The snow albedo feedback (SAF) is an important climate feature of mountain regions with transient snow cover. In these regions, where patterns of snow cover are largely determined by the underlying terrain, the SAF is highly variable in space and time. Under climate warming, these variations may affect the development of diurnal mountain winds either by altering the thermal contrast between high and low elevations or by increasing boundary layer mixing. In this study, high-resolution regional climate modeling experiments are used to investigate and characterize how the SAF modulates changes in diurnal wind systems in the Rocky Mountains of Colorado and Utah during the spring when SAF strength is at a maximum. Two separate 7-yr pseudo–global warming climate change experiments with differing model configurations are examined. An evaluation of the control simulations against a mesoscale network of observations reveals that the models perform reasonably well at simulating diurnal mountain winds within this region. In the experiment with a strong SAF, there is a clear increase in the strength of daytime upslope flow under climate warming, which leads to increased convergence and cloudiness near the snow margin. Additionally, there is a decrease in the strength of nighttime downslope flows. In the simulation with a weaker SAF, the results are generally similar but less pronounced. In both experiments, an altered thermal contrast, rather than increased boundary layer mixing, appears to be the primary mechanism driving changes in diurnal mountain wind systems in this region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Theodore Letcher, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: tletcher@albany.edu
Save
  • Banta, R., and W. Cotton, 1981: An analysis of the structure of local wind systems in a broad mountain basin. J. Appl. Meteor., 20, 12551266, doi:10.1175/1520-0450(1981)020<1255:AAOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker Schaaf, C., R. M. Banta, and J. Wurman, 1988: Thunderstorm-producing terrain features. Bull. Amer. Meteor. Soc., 69, 272277, doi:10.1175/1520-0477(1988)069<0272:TPTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 14491471, doi:10.1175/1520-0493(1994)122<1449:RSFIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2014: Simulation of summer diurnal circulations over the northwest United States. Wea. Forecasting, 29, 12081228, doi:10.1175/WAF-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 795–13 819, doi:10.1002/2014JD022167.

    • Crossref
    • Export Citation
  • Cramer, J., 1988: Observational evaluation of snow cover effects on the generation and modification of mesoscale circulations. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 155 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a217437.pdf.]

  • Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and G. M. Flato, 1999: Enhanced climate change and its detection over the Rocky Mountains. J. Climate, 12, 230243, doi:10.1175/1520-0442-12.1.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Torma, E. Coppola, N. Ban, C. Schär, and S. Somot, 2016: Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nat. Geosci., 9, 584–589, doi:10.1038/ngeo2761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, E. García-Bustamante, J. Navarro, J. P. Montávez, J. V.-G. de Arellano, J. Dudhia, and A. Muñoz-Roldan, 2010: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteor. Climatol., 49, 268287, doi:10.1175/2009JAMC2175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., G. S. Young, J. J. Toth, and R. M. Zehr, 1984: Mesoscale weather effects of variable snow cover over northeast Colorado. Mon. Wea. Rev., 112, 11411152, doi:10.1175/1520-0493(1984)112<1141:MWEOVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, doi:10.1175/JAS-D-12-0199.1.

  • Letcher, T. W., and J. R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Climate, 28, 7576–7595, doi:10.1175/JCLI-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2016: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., doi:10.1007/s00382-016-3327-9, in press.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and R. P. Turco, 1994: Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci., 51, 22852308, doi:10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2006: Variation of surface air temperature in complex terrain. J. Appl. Meteor. Climatol., 45, 14811493, doi:10.1175/JAM2419.1.

  • Millán, M. M., M. J. Estrela, and C. Badenas, 1998: Meteorological processes relevant to forest fire dynamics on the Spanish Mediterranean coast. J. Appl. Meteor., 37, 83100, doi:10.1175/1520-0450(1998)037<0083:MPRTFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, and S. M. Skiles, 2016: An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback. J. Geophys. Res. Atmos., 121, 9069–9088, doi:10.1002/2016JD024995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., M. Lehning, M. Daniels, and M. Lehning, 2015: Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. J. Hydrometeor., 16, 1315–1340, doi:10.1175/JHM-D-14-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Neemann, E., E. Crosman, J. D. Horel, and L. Avey, 2015: Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah basin, Utah. Atmos. Chem. Phys., 15, 135151, doi:10.5194/acp-15-135-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Export Citation
  • Randall, D. A., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99, 20 75720 771, doi:10.1029/94JD01633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. Barsugli, K. Cozzetto, J. Neff, and J. Prairie, 2012: Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models. Climate Dyn., 39, 18231840, doi:10.1007/s00382-011-1282-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2015: High resolution climate modeling of the water cycle over the contiguous United States including potential climate change scenarios. 2015 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A41D-0095.

  • Reddy, P. J., and G. G. Pfister, 2016: Meteorological factors contributing to the interannual variability of mid-summer surface ozone in Colorado, Utah, and other western US states. J. Geophys. Res. Atmos., 121, 2434–2456, doi:10.1002/2015JD023840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., S. Li, P. W. Mote, K. M. Shell, N. Massey, S. N. Sparrow, D. C. Wallom, and M. R. Allen, 2016: Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Climate Dyn., doi:10.1007/s00382-016-3200-x, in press.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, doi:10.1175/2008JCLI2090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, doi:10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., J. Garratt, R. Pielke, and Z. Ye, 1991: Scaling and numerical model evaluation of snow-cover effects on the generation and modification of daytime mesoscale circulations. J. Atmos. Sci., 48, 10241042, doi:10.1175/1520-0469(1991)048<1024:SANMEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian, 2002: A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull. Amer. Meteor. Soc., 83, 699708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. J. Harding, R. A. Pielke Sr., P. L. Vidale, R. L. Walko, and J. W. Pomeroy, 1998: Snow breezes in the boreal forest. J. Geophys. Res., 103, 23 087–23 101, doi:10.1029/98JD02004.

    • Crossref
    • Export Citation
  • Wang, C.-C., and D. J. Kirshbaum, 2015: Thermally forced convection over a mountainous tropical island. J. Atmos. Sci., 72, 24842506, doi:10.1175/JAS-D-14-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., L. J. Bennett, L. Jay Miller, J. Van Baelen, P. Di Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 26872708, doi:10.1175/MWR-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, A. P., J. S. Baron, and R. J. Cornett, 2001: Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol., 25, 17, doi:10.1023/A:1008129509322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., T. M. Pavelsky, S. B. Kapnick, M. T. Durand, and T. H. Painter, 2015: Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada. Int. J. Climatol., 35, 2472–2484, doi:10.1002/joc.4136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Crossref
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, B. J. Snyder, Eds., Springer, 35–119.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 476 147 40
PDF Downloads 309 91 25