Low-Tropospheric Shear in the Structure of Squall Lines: Impacts on Latent Heating under Layer-Lifting Ascent

Diego A. Alfaro Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by Diego A. Alfaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the dependence of the intensity of simulated midlatitude squall lines (SLs) at maturity on the strength of the environmental low-tropospheric shear, focusing on the amplitude of the latent heating produced within the deep convective region. The hypothesis motivating this investigation is that shear fundamentally affects system strength by modulating the mean convective instability of the storm-relative inflowing air, which is justified by the layer-lifting nature of convection in SLs.

The layer-lifting model of convection (LLMC) is proposed for measuring convective instability in the context of SLs, wherein latent heating is estimated by contemplating the storm-relative inflow of CAPE. This framework is used for defining LLMC indices for the precipitation rate and the updraft’s strength and verticality. Idealized SLs at maturity, simulated in a variety of kinematic and thermodynamic environments, encompass wide-ranging values of LLMC indices and degrees of cold pool–shear balance within the spectrum of cold pool–dominated storms.

LLMC indices account for much of the intercase variability in the updraft’s strength and verticality, the precipitation rate, and the convective mode apparent in radar reflectivity plots. It is found that the low-tropospheric shear fundamentally affects the intensity of SLs through its effects on latent heating, with stronger shear leading to larger inflowing convectively unstable air as a fraction of the total storm-relative inflow, favoring system intensity. This behavior could largely explain the dependence of storm intensity on the strength of shear documented in previous investigations, as cold pool–shear balance appears to be less restrictive on the intensity of mature SLs than the strength of the shear alone.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Diego Alfaro, diego.alfaro@atmosfera.unam.mx

Abstract

This study analyzes the dependence of the intensity of simulated midlatitude squall lines (SLs) at maturity on the strength of the environmental low-tropospheric shear, focusing on the amplitude of the latent heating produced within the deep convective region. The hypothesis motivating this investigation is that shear fundamentally affects system strength by modulating the mean convective instability of the storm-relative inflowing air, which is justified by the layer-lifting nature of convection in SLs.

The layer-lifting model of convection (LLMC) is proposed for measuring convective instability in the context of SLs, wherein latent heating is estimated by contemplating the storm-relative inflow of CAPE. This framework is used for defining LLMC indices for the precipitation rate and the updraft’s strength and verticality. Idealized SLs at maturity, simulated in a variety of kinematic and thermodynamic environments, encompass wide-ranging values of LLMC indices and degrees of cold pool–shear balance within the spectrum of cold pool–dominated storms.

LLMC indices account for much of the intercase variability in the updraft’s strength and verticality, the precipitation rate, and the convective mode apparent in radar reflectivity plots. It is found that the low-tropospheric shear fundamentally affects the intensity of SLs through its effects on latent heating, with stronger shear leading to larger inflowing convectively unstable air as a fraction of the total storm-relative inflow, favoring system intensity. This behavior could largely explain the dependence of storm intensity on the strength of shear documented in previous investigations, as cold pool–shear balance appears to be less restrictive on the intensity of mature SLs than the strength of the shear alone.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Diego Alfaro, diego.alfaro@atmosfera.unam.mx
Save
  • Alfaro, D. A., and M. Khairoutdinov, 2015: Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci., 72, 31163137, doi:10.1175/JAS-D-14-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2014: The optimal state for gravity currents in shear. J. Atmos. Sci., 71, 448468, doi:10.1175/JAS-D-13-0156.1.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., D. Ahijevych, C. Davis, S. Trier, and M. Weisman, 2005: Observations of cold pool properties in mesoscale convective systems during BAMEX. Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., JP5J.12. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96718.htm.]

  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792, doi:10.1175/MWR3226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062, doi:10.1175/WAF1040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, doi:10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, doi:10.1175/JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043, doi:10.1175/MWR-D-11-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, doi:10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I. Modes of behavior. J. Atmos. Sci., 52, 20732095, doi:10.1175/1520-0469(1995)052<2073:TTBONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P. H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551577, doi:10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gale, J. J., W. A. Gallus, and K. A. Jungbluth, 2002: Toward improved prediction of mesoscale convective system dissipation. Wea. Forecasting, 17, 856872, doi:10.1175/1520-0434(2002)017<0856:TIPOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., 1973: The squall line thunderstorm: Numerical experimentation. J. Atmos. Sci., 30, 16721690, doi:10.1175/1520-0469(1973)030<1672:TSLTNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., J. M. Fritsch, and P. M. Markowski, 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 26692691, doi:10.1175/MWR3002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze, 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 11651207, doi:10.1002/qj.1999.49712555605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, doi:10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, doi:10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 1996: An analytical study of density currents in sheared, stratified fluids including the effects of latent heating. J. Atmos. Sci., 53, 33033312, doi:10.1175/1520-0469(1996)053<3303:AASODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze, and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, doi:10.1256/003590002320603502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464, doi:10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16781693, doi:10.1175/JAS3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, doi:10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part 2: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, doi:10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210222, doi:10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. H. Johnson, and W. R. Cotton, 1988: The sensitivity of two-dimensional simulations of tropical squall lines to environmental profiles. J. Atmos. Sci., 45, 36253649, doi:10.1175/1520-0469(1988)045<3625:TSOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, doi:10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2010: Relationship between system slope and updraft intensity in squall lines. Mon. Wea. Rev., 138, 35723578, doi:10.1175/2010MWR3441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, doi:10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55, 27152729, doi:10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1990: Comments on “A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines.” J. Atmos. Sci., 47, 10311033, doi:10.1175/1520-0469(1990)047<1031:CONIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 1992: A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents. J. Atmos. Sci., 49, 22932305, doi:10.1175/1520-0469(1992)049<2293:AHMOSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., M. C. Coniglio, R. P. Davies-Jones, and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 29892996, doi:10.1175/JAS3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two‐dimensional convection in non‐constant shear: A model of mid‐latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, doi:10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Kármán, T., 1940: The engineer grapples with nonlinear problems. Bull. Amer. Math. Soc., 46, 615683, doi:10.1090/S0002-9904-1940-07266-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, doi:10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 649 255 28
PDF Downloads 563 214 40