A Microphysical Analysis of Elevated Convection in the Comma Head Region of Continental Winter Cyclones

Amanda M. Murphy Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Amanda M. Murphy in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Joseph A. Finlon Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Joseph A. Finlon in
Current site
Google Scholar
PubMed
Close
,
David M. Plummer Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, and Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Andrew A. Rosenow Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Andrew A. Rosenow in
Current site
Google Scholar
PubMed
Close
, and
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of the microphysical structure of elevated convection within the comma head region of two winter cyclones over the midwestern United States is presented using data from the Wyoming Cloud Radar (WCR) and microphysical probes on the NSF/NCAR C-130 aircraft during the Profiling of Winter Storms campaign. The aircraft penetrated 36 elevated convective cells at various temperatures T and distances below cloud top zd. The statistical properties of ice water content (IWC), liquid water content (LWC), ice particle concentration with diameter > 500 μm N>500, and median mass diameter Dmm, as well as particle habits within these cells were determined as functions of zd and T for active updrafts and residual stratiform regions originating from convective towers that ascended through unsaturated air. Insufficient data were available for analysis within downdrafts.

For updrafts stratified by zd, distributions of IWC, N>500, and Dmm for all zd between 1000 and 4000 m proved to be statistically indistinct. These results imply that turbulence and mixing within the updrafts effectively distributed particles throughout their depths. A decrease in IWC and N>500 in the layer closest to cloud top was likely related to cloud-top entrainment.

Within residual stratiform regions, decreases in IWC and N>500 and increases in Dmm were observed with depth below cloud top. These trends are consistent with particles falling and aggregating while entrainment and subsequent sublimation was occurring.

Current affiliation: School of Meteorology, University of Oklahoma, Norman, Oklahoma.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Amanda M. Murphy, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: amanda.murphy@ou.edu

Abstract

An analysis of the microphysical structure of elevated convection within the comma head region of two winter cyclones over the midwestern United States is presented using data from the Wyoming Cloud Radar (WCR) and microphysical probes on the NSF/NCAR C-130 aircraft during the Profiling of Winter Storms campaign. The aircraft penetrated 36 elevated convective cells at various temperatures T and distances below cloud top zd. The statistical properties of ice water content (IWC), liquid water content (LWC), ice particle concentration with diameter > 500 μm N>500, and median mass diameter Dmm, as well as particle habits within these cells were determined as functions of zd and T for active updrafts and residual stratiform regions originating from convective towers that ascended through unsaturated air. Insufficient data were available for analysis within downdrafts.

For updrafts stratified by zd, distributions of IWC, N>500, and Dmm for all zd between 1000 and 4000 m proved to be statistically indistinct. These results imply that turbulence and mixing within the updrafts effectively distributed particles throughout their depths. A decrease in IWC and N>500 in the layer closest to cloud top was likely related to cloud-top entrainment.

Within residual stratiform regions, decreases in IWC and N>500 and increases in Dmm were observed with depth below cloud top. These trends are consistent with particles falling and aggregating while entrainment and subsequent sublimation was occurring.

Current affiliation: School of Meteorology, University of Oklahoma, Norman, Oklahoma.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Amanda M. Murphy, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: amanda.murphy@ou.edu
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, M. J., S. A. Clough, and G. P. Cox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, doi:10.1002/qj.49711347605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, doi:10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beldon, W. S., 1927: A thunderstorm with rain, hail, sleet, and snow. Mon. Wea. Rev., 55, 133, doi:10.1175/1520-0493(1927)55<133b:ATWRHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. F., 1920: A cloud cross-section of a winter cyclone. Mon. Wea. Rev., 48, 2628, doi:10.1175/1520-0493(1920)48<26:ACCOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1983: Air motion and precipitation growth in a major snowstorm. Quart. J. Roy. Meteor. Soc., 109, 225242, doi:10.1002/qj.49710945911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, S., and P. V. Hobbs, 1987: Mesoscale structures of two comma cloud systems over the Pacific Ocean. Mon. Wea. Rev., 115, 19081928, doi:10.1175/1520-0493(1987)115<1908:MSOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butterworth, J., 1895: Thunder and lightning in December. Mon. Wea. Rev., 23, 464, doi:10.1175/1520-0493(1895)23[464b:TALID]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and A. R. Bohne, 1975: Cellular snow generation—A Doppler radar study. J. Atmos. Sci., 32, 13841394, doi:10.1175/1520-0469(1975)032<1384:CSGDRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., D. Stark, and S. E. Yuter, 2014: Surface microphysical observations within East Coast winter storms on Long Island, New York. Mon. Wea. Rev., 142, 31263146, doi:10.1175/MWR-D-14-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronce, M., R. M. Rauber, K. R. Knupp, B. F. Jewett, J. T. Walters, and D. Phillips, 2007: Vertical motions in precipitation bands in three winter cyclones. J. Appl. Meteor. Climatol., 46, 15231543, doi:10.1175/JAM2533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2014: Microphysical properties of cold frontal rainbands. Quart. J. Roy. Meteor. Soc., 140, 12571268, doi:10.1002/qj.2206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G., and S. E. Yuter, 2014: Instability characteristics of radar-derived mesoscale organization modes within cool-season precipitation near Portland, Oregon. Mon. Wea. Rev., 142, 17381757, doi:10.1175/MWR-D-13-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearden, C., P. J. Connolly, G. Lloyd, J. Crosier, K. N. Bower, T. W. Choularton, and G. Vaughan, 2014: Diabatic heating and cooling rates derived from in situ microphysics measurements: A case study of a wintertime U.K. cold front. Mon. Wea. Rev., 142, 31003125, doi:10.1175/MWR-D-14-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorsi, S. W., M. D. Shupe, P. O. G. Persson, D. E. Kingsmill, and L. M. Avallone, 2015: Phase-specific characteristics of wintertime clouds across a midlatitude mountain range. Mon. Wea. Rev., 143, 41814197, doi:10.1175/MWR-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, doi:10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, doi:10.1175/WAF-D-14-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., M. P. Langleben, A. S. Dennis, and B. A. Power, 1954: Radar evidence of a generating level for snow. J. Meteor., 11, 2026, doi:10.1175/1520-0469(1954)011<0020:REOAGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henrion, X., H. Sauvageot, and D. Ramond, 1978: Finestructure of precipitation and temperature in a stratocumulus cloud. J. Atmos. Sci., 35, 23152324, doi:10.1175/1520-0469(1978)035<2315:FOPATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herschel, A. S., 1888: Lightning in snowstorms. Quart. J. Roy. Meteor. Soc., 14, 222225, doi:10.1002/qj.4970146706.

  • Herzegh, P. H., and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-frontal clouds. J. Atmos. Sci., 37, 597611, doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1975a: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808, doi:10.1175/1520-0469(1975)032<0799:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1975b: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. J. Atmos. Sci., 32, 809819, doi:10.1175/1520-0469(1975)032<0809:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241, doi:10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., R. A. Houze Jr., and T. J. Matejka, 1975: The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J. Atmos. Sci., 32, 15421562, doi:10.1175/1520-0469(1975)032<1542:TDAMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568596, doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, doi:10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. A. Rutledge, T. J. Matejka, and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, doi:10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S. M., S. J. Underwood, R. L. Holle, and T. L. Mote, 2001: Winter lightning and heavy frozen precipitation in the southeast United States. Wea. Forecasting, 16, 478490, doi:10.1175/1520-0434(2001)016<0478:WLAHFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, doi:10.1175/JTECH-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, doi:10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J., B. Jewett, R. Rauber, G. McFarquhar, R. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, doi:10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. Emery, and K. Creelman, 2013: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and W. Deierling, 2015: Analysis of thundersnow storms over northern Colorado. Wea. Forecasting, 30, 14691490, doi:10.1175/WAF-D-15-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting Model. Mon. Wea. Rev., 137, 13721392, doi:10.1175/2008MWR2653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: Growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, doi:10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marécal, V., D. Hauser, and C. Duroure, 1993: Airborne microphysical measurements and radar reflectivity observations near a cold frontal rainband observed during the FRONTS 87 experiment. Atmos. Res., 29, 179207, doi:10.1016/0169-8095(93)90003-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, doi:10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007a: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCor, T. Tooman, and A. J. Heymsfield, 2007b: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment. Part I: Observations. J. Geophys. Res., 112, 21562202, doi:10.1029/2007JD008633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., and P. D. Blakley, 1988: The role of frontogenetical forcing and conditional symmetric instability in the Midwest snowstorm of 30–31 January 1982. Mon. Wea. Rev., 116, 21552171, doi:10.1175/1520-0493(1988)116<2155:TROFFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., 1978a: An approximate analytical model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35, 118124, doi:10.1175/1520-0469(1978)035<0118:AAAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., 1978b: Theoretical and observational study of snow-size spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35, 882889, doi:10.1175/1520-0469(1978)035<0882:TAOSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., D. M. Schultz, B. A. Colle, S. Ganetis, D. R. Novak, and M. J. Sienkiewicz, 2014: The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband. Bull. Amer. Meteor. Soc., 95, 18251834, doi:10.1175/BAMS-D-13-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks in the comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, doi:10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014a: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, doi:10.1175/MWR-D-14-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014b: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2015: The role of cloud-top generating cells and boundary layer circulations in the finescale radar structure of a winter cyclone over the Great Lakes. Mon. Wea. Rev., 143, 22912318, doi:10.1175/MWR-D-14-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. R., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical motions within generating cells and elevated convection in the comma head of winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 2010: The unit symbol for the logarithmic scale of radar reflectivity factors. J. Atmos. Oceanic Technol., 27, 615616, doi:10.1175/2009JTECHA1360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syrett, W. J., B. A. Albrecht, and E. E. Clothiaux, 1995: Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar. Mon. Wea. Rev., 123, 33933407, doi:10.1175/1520-0493(1995)123<3393:VCSIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Meteor., 16, 327332, doi:10.1175/1520-0469(1959)016<0327:PGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, doi:10.2307/3001968.

  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, S., X. Guo, G. Lu, and L. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci., 72, 20112032, doi:10.1175/JAS-D-14-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 372 97 14
PDF Downloads 265 56 8