Large-Eddy Simulation of a Katabatic Jet along a Convexly Curved Slope. Part I: Statistical Results

Christophe Brun Laboratoire des Ecoulements Géophysiques et Industriels, Université de Grenoble Alpes, Grenoble, France

Search for other papers by Christophe Brun in
Current site
Google Scholar
PubMed
Close
,
Sébastien Blein Laboratoire des Ecoulements Géophysiques et Industriels, Université de Grenoble Alpes, Grenoble, France

Search for other papers by Sébastien Blein in
Current site
Google Scholar
PubMed
Close
, and
Jean-Pierre Chollet Laboratoire des Ecoulements Géophysiques et Industriels, Université de Grenoble Alpes, Grenoble, France

Search for other papers by Jean-Pierre Chollet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulation is performed to study a katabatic jet along a convexly curved slope with a maximum angle of about 35.5°. The design of this numerical simulation of turbulent shear flow is discussed, and a qualitative assessment of the method is proposed. The katabatic flow is artificially generated by ground surface cooling, and a stable atmospheric boundary layer with constant stratification is considered as a reference state. A quantitative statistical analysis is used to describe the present turbulent flow, with a focus on the outer-layer shear of the katabatic jet, which extends about 50 m above the jet maximum. The Prandtl model for a katabatic jet is applied to the present results, and revisited versions of the model found in the literature are discussed, with an emphasis on specific momentum and turbulent heat diffusion. The vertical and downslope variability of the turbulent kinetic energy budget is also discussed, and it is shown that advection and production contributions in the downslope direction are far from negligible in katabatic flows along curved slopes. A specific effect that the convex curvature has on the katabatic jet is one of centrifugal deceleration and an increase of the flow’s turbulent production and turbulent intensity in the outer-layer shear. A strong thickening of the outer layer is also observed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christophe Brun, christophe.brun@univ-grenoble-alpes.fr

Abstract

Large-eddy simulation is performed to study a katabatic jet along a convexly curved slope with a maximum angle of about 35.5°. The design of this numerical simulation of turbulent shear flow is discussed, and a qualitative assessment of the method is proposed. The katabatic flow is artificially generated by ground surface cooling, and a stable atmospheric boundary layer with constant stratification is considered as a reference state. A quantitative statistical analysis is used to describe the present turbulent flow, with a focus on the outer-layer shear of the katabatic jet, which extends about 50 m above the jet maximum. The Prandtl model for a katabatic jet is applied to the present results, and revisited versions of the model found in the literature are discussed, with an emphasis on specific momentum and turbulent heat diffusion. The vertical and downslope variability of the turbulent kinetic energy budget is also discussed, and it is shown that advection and production contributions in the downslope direction are far from negligible in katabatic flows along curved slopes. A specific effect that the convex curvature has on the katabatic jet is one of centrifugal deceleration and an increase of the flow’s turbulent production and turbulent intensity in the outer-layer shear. A strong thickening of the outer layer is also observed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christophe Brun, christophe.brun@univ-grenoble-alpes.fr
Save
  • Andren, A., 1995: The structure of stably stratified atmospheric boundary layers: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 121, 961985, doi:10.1002/qj.49712152502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduini, G., C. Staquet, and C. Chemel, 2016: Interactions between the nighttime valley-wind system and a developing cold-air pool. Bound.-Layer Meteor., 161, 4972, doi:10.1007/s10546-016-0155-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Axelsen, S., and H. van Dop, 2009a: Large-eddy simulation of katabatic winds. Part 1: Comparison with observations. Acta Geophys., 57, 803836, doi:10.2478/s11600-009-0041-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Axelsen, S., and H. van Dop, 2009b: Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models. Acta Geophys., 57, 837856, doi:10.2478/s11600-009-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Axelsen, S., A. Shapiro, E. Fedorovich, and H. van Dop, 2010: Analytical solution for katabatic flow induced by an isolated cold strip. Environ. Fluid Mech., 10, 387414, doi:10.1007/s10652-009-9158-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benard, P., G. Balarac, V. Moureau, C. Dobrzynski, G. Lartigue, and Y. D’Angelo, 2016: Mesh adaptation for large-eddy simulations in complex geometries. Int. J. Numer. Methods Fluids, 81, 719740, doi:10.1002/fld.4204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blein, S., 2016: Observation et modélisation de couche limite atmosphérique stable en relief complexe: le processus d’écoulement catabatique (Observation and modelling of stable atmospheric boundary layer over complex terrain: The turbulent katabatic wind process). Ph.D. thesis, Grenoble Alpes University, 232 pp.

  • Bougeault, P., P. Mascart, and J. Chaboureau, 2008: The Meso-NH atmospheric simulation system: Scientific documentation. Météo-France, CNRS. [Available online at http://mesonh.aero.obs-mip.fr/mesonh/.]

  • Boussinesq, J., 1877: Essai sur la théorie des eaux courantes. Mem. Divers Savans Acad. Sci. Inst. Fr., 23, 1680.

  • Bradshaw, P., 1969: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech., 36, 177191, doi:10.1017/S0022112069001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, J., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breuer, M., O. Aybay, B. Jaffrézic, M. Visonneau, G. Deng, E. Guilmineau, and O. Chikhaoui, 2009: Hybrid LES–RANS-coupling for complex flows with separation. Numerical Simulation of Turbulent Flows and Noise Generation: Results of the DFG/CNRS Research Groups FOR 507 and FOR 508, C. Brun et al., Eds., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 104, Kluwer, 201–229, doi:10.1007/978-3-540-89956-3_9.

    • Crossref
    • Export Citation
  • Brulfert, C., C. Chemel, E. Chaxel, and J. P. Chollet, 2005: Modelling photochemistry in alpine valleys. Atmos. Chem. Phys., 5, 23412355, doi:10.5194/acp-5-2341-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, C., 2017: Large-eddy simulation of a katabatic jet along a convexly curved slope. 2: Evidence of Görtler vortices. J. Geophys. Res. Atmos., 122, 51905210, doi:10.1002/2016JD025416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, C., and R. Friedrich, 2001: Modeling the test SGS tensor : An issue in the dynamic approach. Phys. Fluids, 13, 23732385, doi:10.1063/1.1378037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, C., C. da Silva, and R. Friedrich, 2006: A non-linear SGS model based on the spatial velocity increment: Application to LES of fully developed pipe flow and round turbulent jet. Theor. Comput. Fluid Dyn., 20, 121, doi:10.1007/s00162-005-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, C., G. Balarac, C. B. da Silva, and O. Métais, 2008: Effects of molecular diffusion on the subgrid-scale modeling of passive scalars. Phys. Fluids, 20, 025102, doi:10.1063/1.2844469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkholder, B., E. Fedorovich, and A. Shapiro, 2011: Evaluating subgrid-scale models for large-eddy simulation of turbulent katabatic flow. Quality and Reliability of Large-Eddy Simulations II, M. Salvetti et al., Eds., Springer, 149–160, doi:10.1007/978-94-007-0231-8_14.

    • Crossref
    • Export Citation
  • Celik, I., M. Klein, M. Freitag, and J. Janicka, 2006: Assessment measures for URANS/DES/LES: An overview with applications. J. Turbul., 7, 127, doi:10.1080/14685240600794379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaxel, E., and J. Chollet, 2009: Ozone production from Grenoble city during the August 2003 heat wave. Atmos. Environ., 43, 47844792, doi:10.1016/j.atmosenv.2008.10.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaxel, E., J. Chollet, C. Brulfert, and C. Chemel, 2005: Production of ozone in the Chamonix Valley (France). Int. J. Environ. Pollut., 24, 201217, doi:10.1504/IJEP.2005.007394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chollet, J., and M. Lesieur, 1981: Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci., 38, 27472757, doi:10.1175/1520-0469(1981)038<2747:POSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, S., and F. Champagne, 1971: Orderly structure in jet turbulence. J. Fluid Mech., 48, 547591, doi:10.1017/S0022112071001745.

  • Cuxart, J., 2008: Nocturnal basin low-level jets: An integrated study. Acta Geophys., 56, 100113, doi:10.2478/s11600-007-0042-2.

  • Cuxart, J., 2015: When can a high-resolution simulation over complex terrain be called LES? Front. Earth Sci., 3, 87, doi:10.3389/feart.2015.00087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. Jimenez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679, doi:10.1175/JAS3903.1.

  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000a: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2000b: Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A report. Bound.-Layer Meteor., 96, 337370, doi:10.1023/A:1002609509707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. Jimenez, and D. Martinez, 2006: Nocturnal meso-beta basin and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 919932, doi:10.1175/MWR3329.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H., 1976: A lateral boundary formulation for multi -level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418.

  • Deardorff, J., 1970: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453465, doi:10.1017/S0022112070000691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1974: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 7, 81106, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J., and T. Horst, 1983: Observations and models of simple nocturnal flows. J. Atmos. Sci., 40, 708717, doi:10.1175/1520-0469(1983)040<0708:OAMOSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J., and T. Horst, 1990: The development and structure of nocturnal slope winds in a simple valley. Bound.-Layer Meteor., 52, 4168, doi:10.1007/BF00123177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D., 2010: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. 2nd ed. Springer-Verlag, 516 p.

  • Eriksson, J., R. Karlsson, and J. Persson, 1998: An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids, 25, 5060, doi:10.1007/s003480050207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and R. Conzemius, 2001: Large-eddy simulation of convective entrainment in linearly and discretely stratified fluids. Direct and Large-Eddy Simulation IV, B. Geurts, R. Friedrich, and O. Métais, Eds., ERCOFTAC Series, Vol. 8, Kluwer Academic Publishers, 299–310.

  • Fedorovich, E., and A. Shapiro, 2009: Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys., 57, 9811010, doi:10.2478/s11600-009-0027-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, J., and D. von Terzi, 2008: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci., 44, 349377, doi:10.1016/j.paerosci.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A., L. Leo, S. Di Sabatino, H. Fernando, E. Pardyjak, and C. Fairall, 2016: Structure of turbulence in katabatic flows below and above the wind-speed maximum. Bound.-Layer Meteor., 159, 469494, doi:10.1007/s10546-015-0034-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and J. Oerlemans, 2001a: Katabatic flows: Analytical solution for gradually varying eddy diffusivities. J. Atmos. Sci., 58, 33493354, doi:10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and J. Oerlemans, 2001b: A theory for the estimation of surface fluxes in simple katabatic flows. Quart. J. Roy. Meteor. Soc., 127, 27252739, doi:10.1002/qj.49712757811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and S. Axelsen, 2012: A note on the pure katabatic wind maximum over gentle slopes. Bound.-Layer Meteor., 145, 527538, doi:10.1007/s10546-012-9746-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., T. Jurlina, Z. Vecenaj, and I. Güttler, 2015: Weakly nonlinear Prandtl model for simple slope flows. Quart. J. Roy. Meteor. Soc., 141, 883892, doi:10.1002/qj.2406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Güttler, I., I. Marinović, Z. Vecenaj, and B. Grisogono, 2016: Energetics of slope flows: Linear and weakly nonlinear solutions of the extended Prandtl model. Front. Earth Sci., 4, 72, doi:10.3389/feart.2016.00072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, P., K. Muck, and P. Bradshaw, 1985: The effect of concave surface curvature on turbulent boundary layers. J. Fluid Mech., 161, 371403, doi:10.1017/S0022112085002981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horst, T., and J. Doran, 1988: The turbulence structure of nocturnal slope flows. J. Atmos. Sci., 45, 605616, doi:10.1175/1520-0469(1988)045<0605:TTSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakirlić, S., and Coauthors, 2009: LES, zonal and seamless hybrid LES/RANS: Rationale and application to free and wall-bounded flows involving separation and swirl. Numerical Simulation of Turbulent Flows and Noise Generation: Results of the DFG/CNRS Research Groups FOR 507 and FOR 508, C. Brun et al., Eds., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 104, Kluwer, 253–282, doi:10.1007/978-3-540-89956-3_11.

    • Crossref
    • Export Citation
  • Jimenez, J., J. Del Alamo, and O. Flores, 2004: The large-scale dynamics of near-wall turbulence. J. Fluid Mech., 505, 179199, doi:10.1017/S0022112004008389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J., and J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 304 pp.

    • Crossref
    • Export Citation
  • Kovasznay, L., 1953: Turbulence in supersonic flow. J. Aeronaut. Sci., 20, 657674, doi:10.2514/8.2793.

  • Kravchenko, A., P. Moin, and R. Moser, 1996: Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys., 127, 412423, doi:10.1006/jcph.1996.0184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Launder, B., and W. Rodi, 1983: The turbulent wall jet—Measurements and modelling. Annu. Rev. Fluid Mech., 15, 429459, doi:10.1146/annurev.fl.15.010183.002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and R. Moser, 2015: Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech., 774, 395415, doi:10.1017/jfm.2015.268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., 2008: Turbulence in Fluids. 4th ed. Fluid Mechanics and Its Applications, Vol. 84, Kluwer Academic Publishers, 563 pp.

    • Crossref
    • Export Citation
  • Lesieur, M., and R. Rogallo, 1989: Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids, 1A, 718722, doi:10.1063/1.857365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., and O. Métais, 1996: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech., 28, 4582, doi:10.1146/annurev.fl.28.010196.000401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., O. Métais, and P. Comte, 2005: Large-Eddy Simulations of Turbulence. Cambridge University Press, 232 pp.

    • Crossref
    • Export Citation
  • Lilly, D., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, IBM, 195–210.

  • Lobocki, L., 2014: Surface-layer flux–gradient relationships over inclined terrain derived from a local equilibrium turbulence closure model. Bound.-Layer Meteor., 150, 469483, doi:10.1007/s10546-013-9888-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

  • Martinez, D., M. Jimenez, J. Cuxart, and L. Mahrt, 2010: Heterogeneous nocturnal cooling in a large basin under very stable conditions. Bound.-Layer Meteor., 137, 97113, doi:10.1007/s10546-010-9522-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascart, P., J. Noilhan, and H. Giordani, 1995: A modified parametrization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteor., 72, 331344, doi:10.1007/BF00708998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, doi:10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P., 1994: Large-eddy simulation: A critical review of the technique. Quart. J. Roy. Meteor. Soc., 120, 126, doi:10.1002/qj.49712051503.

  • Mason, P., and D. Derbyshire, 1990: Large-eddy simulation of the stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 53, 117162, doi:10.1007/BF00122467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., and Y. Seity, 2009: Including atmospheric layers in vegetation and urban offline surface schemes. J. Appl. Meteor. Climatol., 48, 13771397, doi:10.1175/2009JAMC1866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Métais, O., and M. Lesieur, 1992: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239, 157194, doi:10.1017/S0022112092004361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moin, P., K. Squires, W. H. Cabot, and S. Lee, 1991: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, 3A, 27462757, doi:10.1063/1.858164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monti, P., H. Fernando, M. Princevac, W. Chan, T. Kowalewski, and E. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534, doi:10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muck, K., P. Hoffmann, and P. Bradshaw, 1985: The effect of convex surface curvature on turbulent boundary layers. J. Fluid Mech., 161, 347369, doi:10.1017/S002211208500297X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, D., E. Pardyjak, C. Higgins, H. Huwald, and M. Parlange, 2013a: Flow during the evening transition over steep Alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607624, doi:10.1002/qj.1985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, D., E. Pardyjak, C. Higgins, and M. Parlange, 2013b: Similarity scaling over a steep Alpine slope. Bound.-Layer Meteor., 147, 401419, doi:10.1007/s10546-012-9787-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F., and J. Meeder, 1996: Large-eddy simulation of air pollution dispersion: A review. New Tools in Turbulence Modelling, O. Métais and J. H. Ferziger, Eds., Springer, 265–280, doi:10.1007/978-3-662-08975-0_13.

    • Crossref
    • Export Citation
  • Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C. Smeets, H. Vugts, and J. De Wolde, 1999: Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: An overview. Bound.-Layer Meteor., 92, 324, doi:10.1023/A:1001856114941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldroyd, H., E. Pardyjak, C. Higgins, and M. Parlange, 2016: Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Bound.-Layer Meteor., 161, 405416, doi:10.1007/s10546-016-0184-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philibert, A., 2016: Etude expérimentale et caractrisation d’un écoulement catabatique sur forte pente (Experimental study and analysis of a katabatic wind along a steep slope). M. S. thesis, Grenoble Alps University, 39 pp.

  • Piomelli, U., 2014: Large eddy simulations in 2030 and beyond. Philos. Trans. Roy. Soc. London, A372, 20130320, doi:10.1098/rsta.2013.0320.

    • Search Google Scholar
    • Export Citation
  • Piomelli, U., and E. Balaras, 2002: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech., 34, 349374, doi:10.1146/annurev.fluid.34.082901.144919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 806 pp.

    • Crossref
    • Export Citation
  • Prandtl, L., 1942: Fürer Durch die Strömungslehre. Vieweg und Sohn, 764 pp.

  • Redelsperger, J.-L., and G. Someria, 1981: Méthode de représentation de la turbulence d’échelle inférieure à la maille pour un modèle tridimensionnel de convection nuageuse. Bound.-Layer Meteor., 21, 509530, doi:10.1007/BF02033598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., and J. P. Lafore, 1988: A threedimensional simulation of a tropical squall-line: Convective organization and thermodynamic vertical transport. J. Atmos. Sci, 45, 13341356, doi:10.1175/1520-0469(1988)045,1334:ATDSOA.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogallo, R., and P. Moin, 1984: Numerical simulations of turbulent flows. Annu. Rev. Fluid Mech., 16, 99137, doi:10.1146/annurev.fl.16.010184.000531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagaut, P., 2001: Large Eddy Simulation for Incompressible Flows: An Introduction. 1st ed. Springer-Verlag, 558 pp., doi:10.1007/b137536.

    • Crossref
    • Export Citation
  • Saric, D., 1994: Görtler vortices. Annu. Rev. Fluid Mech., 26, 379409, doi:10.1146/annurev.fl.26.010194.002115.

  • Schlichting, H., 1968: Boundary-Layer Theory. 3rd ed. McGraw-Hill, 823 pp.

  • Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18, 376404, doi:10.1016/0021-9991(75)90093-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., 2003: Large-eddy simulation of katabatic flows. Bound.-Layer Meteor., 106, 217243, doi:10.1023/A:1021142828676.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C., and E. Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 30653080, doi:10.1175/MWR2982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C., and F. Porté-Agel, 2014: An intercomparison of subgrid models for large-eddy simulation of katabatic flows. Quart. J. Roy. Meteor. Soc., 140, 12941303, doi:10.1002/qj.2212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic Publisher, 670 pp.

  • Sullivan, P., J. Mc Williams, and C. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trachte, K., T. Nauss, and J. Bendix, 2010: The impact of different terrain configurations on the formation and dynamics of katabatic flows: Idealised case studies. Bound.-Layer Meteor., 134, 307325, doi:10.1007/s10546-009-9445-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Broeke, M., 1997: Momentum, heat, and moisture budgets wind layer over a midlatitude glacier in summer. J. Appl. Meteor., 36, 763774, doi:10.1175/1520-0450(1997)036<0763:MHAMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and S. Zhong, 2008: Downslope flows on a low-angle slope and their interaction with valley inversions. J. Appl. Meteor. Climatol., 47, 20232038, doi:10.1175/2007JAMC1669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P., 2009: A proposed modification to the Robert–Asselin time filter. Mon. Wea. Rev., 137, 25382546, doi:10.1175/2009MWR2724.1.

  • Wyngaard, J., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

    • Crossref
    • Export Citation
  • Wyngaard, J., and O. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190201, doi:10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zammett, R., and A. Fowler, 2007: Katabatic winds on ice sheets: A refinement of the Prandtl model. J. Atmos. Sci., 64, 27072716, doi:10.1175/JAS3960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and P. Calanca, 2000: An extended similarity theory for the stably stratified atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 126, 19131923, doi:10.1256/smsqj.56617.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 331 118 6
PDF Downloads 200 68 6