Formation of Long-Lived Summertime Mesoscale Vortices over Central East China:Semi-Idealized Simulations Based on a 14-Year Vortex Statistic

Shen-Ming Fu International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shen-Ming Fu in
Current site
Google Scholar
PubMed
Close
,
Jian-Hua Sun Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jian-Hua Sun in
Current site
Google Scholar
PubMed
Close
,
Ya-Li Luo State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ya-Li Luo in
Current site
Google Scholar
PubMed
Close
, and
Yuan-Chun Zhang Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuan-Chun Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Regions around Dabie Mountain (DBM) in the Yangtze River basin (YRB) are the source of a mesoscale vortex: the Dabie vortex (DBV). Based on a 14-yr statistical study, 11 long-lived heavy-rain-producing DBVs were composited for convection-permitting semi-idealized simulations. A control simulation, initialized 12 h before the composite vortex formation, successfully reproduced a DBV, with all the salient characteristics of the 11 events. Sensitivity experiments were designed to understand the impacts of large-scale environmental conditions, regional topography, and latent heating on DBV formation. The main results were as follows: (i) Supposition of a 500-hPa shortwave trough with an east–west-oriented lower-level transversal trough around the DBM is crucial for the formation of vortices. A nocturnal lower-level jet on the southern side of the transversal trough accelerates DBV formation by enhancing convergence, triggering/sustaining convection, and producing cyclonic vorticity. (ii) During the simulation period, the topography east of the second-step mountain ranges, including the DBM, significantly affects nearby precipitation and convective activity, whereas this is not crucial for DBV formation. (iii) Latent heating is not required for generating DBVs, but it enhances the intensity, longevity, and eastward progression of these vortices along the shear line associated with the transversal trough. (iv) The vorticity budget suggests the convergence-related (horizontal) shrinking and vertical transport dominate the cyclonic-vorticity increase associated with DBVs, whereas tilting and horizontal transport mainly act in the opposite manner.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shen-Ming Fu, fusm@mail.iap.ac.cn

Abstract

Regions around Dabie Mountain (DBM) in the Yangtze River basin (YRB) are the source of a mesoscale vortex: the Dabie vortex (DBV). Based on a 14-yr statistical study, 11 long-lived heavy-rain-producing DBVs were composited for convection-permitting semi-idealized simulations. A control simulation, initialized 12 h before the composite vortex formation, successfully reproduced a DBV, with all the salient characteristics of the 11 events. Sensitivity experiments were designed to understand the impacts of large-scale environmental conditions, regional topography, and latent heating on DBV formation. The main results were as follows: (i) Supposition of a 500-hPa shortwave trough with an east–west-oriented lower-level transversal trough around the DBM is crucial for the formation of vortices. A nocturnal lower-level jet on the southern side of the transversal trough accelerates DBV formation by enhancing convergence, triggering/sustaining convection, and producing cyclonic vorticity. (ii) During the simulation period, the topography east of the second-step mountain ranges, including the DBM, significantly affects nearby precipitation and convective activity, whereas this is not crucial for DBV formation. (iii) Latent heating is not required for generating DBVs, but it enhances the intensity, longevity, and eastward progression of these vortices along the shear line associated with the transversal trough. (iv) The vorticity budget suggests the convergence-related (horizontal) shrinking and vertical transport dominate the cyclonic-vorticity increase associated with DBVs, whereas tilting and horizontal transport mainly act in the opposite manner.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shen-Ming Fu, fusm@mail.iap.ac.cn
Save
  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118, doi:10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109127, doi:10.1175/1520-0493(1990)118<0109:EASOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, G.-F., 1986: A study on the formation conditions for heavy rains under troughs and warm shear lines over the middle reaches of Changjiang River in China. Chin. J. Atmos. Sci., 10, 196203.

    • Search Google Scholar
    • Export Citation
  • Chi, L.-R., 1965: Numerical analysis of the process of a low level shear line formation over China. Acta Meteor. Sin., 35, 133.

  • Clark, A. J., C. J. Schaffer, W. A. Gallus Jr., and K. Johnson-O’Mara, 2009: Climatology of storm reports relative to upper-level jet streaks. Wea. Forecasting, 24, 10321051, doi:10.1175/2009WAF2222216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F.-Y. Kong, 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., M.-S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765783, doi:10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, doi:10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049, doi:10.1175/MWR3398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, doi:10.1175/2008JAS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, doi:10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1993: Study on the Lasting Heavy Rainfalls over the Yangtze-Huaihe River Basin in 1991. China Meteorological Press, 255 pp.

  • Duan, A.-M., and G.-X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, doi:10.1007/s00382-004-0488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, S.-M., F. Yu, D.-H. Wang, and R.-D. Xia, 2013: A comparison of two kinds of eastward-moving mesoscale vortices during the mei-yu period of 2010. Sci. China Earth Sci., 56, 282300, doi:10.1007/s11430-012-4420-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, S.-M., J.-H. Sun, and J.-R. Sun, 2014: Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: A piecewise potential vorticity diagnosis. Tellus, 66, 23210, doi:10.3402/tellusa.v66.23210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, S.-M., W.-L. Li, and J. Ling, 2015a: On the evolution of a long-lived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J. Geophys. Res. Atmos., 120, 11 88911 917, doi:10.1002/2015jd023700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, S.-M., W.-L. Li, J.-H. Sun, J.-P. Zhang, and Y.-C. Zhang, 2015b: Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin. Atmos. Sci. Lett., 16, 127134, doi:10.1002/asl2.533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, S.-M., J.-P. Zhang, J.-H. Sun, and T.-B. Zhao, 2016: Composite analysis of long-lived mesoscale vortices over the middle reaches of the Yangtze River valley: Octant features and evolution mechanisms. J. Climate, 29, 761781, doi:10.1175/JCLI-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., L. F. Bosart, C. A. Davis, and R. McTaggart-Cowan, 2009: Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev., 137, 562584, doi:10.1175/2008MWR2651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., and Y.-M. Xu, 2001: A simulation study of structure of mesovortices along Meiyu front during 22–30 June 1999 (in Chinese). Chin. J. Atmos. Sci., 25, 740756.

    • Search Google Scholar
    • Export Citation
  • He, M.-Y., H.-B. Liu, B. Wang, and D.-L. Zhang, 2016: A modeling study of a low-level jet along the Yun-Gui Plateau in south China. J. Appl. Meteor. Climatol., 55, 4160, doi:10.1175/JAMC-D-15-0067.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 552 pp.

  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, B.-W., and E.-F. Pan, 1996: Two kinds of cyclonic disturbances and their accompanied heavy rain in the Yangtze River Valley during the Meiyu period (in Chinese). Quart. J. Appl. Meteor., 7, 138144.

    • Search Google Scholar
    • Export Citation
  • James, E. P., and R. H. Johnson, 2010a: Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev., 138, 909931, doi:10.1175/2009MWR3076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., and R. H. Johnson, 2010b: A climatology of midlatitude mesoscale convective vortices in the Rapid Update Cycle. Mon. Wea. Rev., 138, 19401956, doi:10.1175/2009MWR3208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk, J. R., 2003: Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev., 131, 862890, doi:10.1175/1520-0493(2003)131<0862:CTDDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., and R. H. Johnson, 2003: A scale-discriminating vorticity budget for a mesoscale vortex in a midlatitude, continental mesoscale convective system. J. Atmos. Sci., 60, 781794, doi:10.1175/1520-0469(2003)060<0781:ASDVBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J.-H., 1986: Generality of the Southwest Vortex (in Chinese). China Meteorological Press, 270 pp.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010: Development and tropical transition of an alpine lee cyclone. Part I: Case analysis and evaluation of numerical guidance. Mon. Wea. Rev., 138, 22812307, doi:10.1175/2009MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, and S. Raasch, 2001: The improvement of the K-profile model for the PBL using LES. Preprints, Int. Workshop of Next Generation NWP Model, Seoul, South Korea, Laboratory for Atmospheric Modeling Research, 65–66.

  • Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci., 54, 479497, doi:10.1175/1520-0469(1997)054<0479:BAUCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Ralph, F. M., L. Armi, J. M. Bane, C. Dorman, W. D. Neff, P. J. Neiman, W. Nuss, and P. O. G. Persson, 1998: Observations and analysis of the 10–11 June 1994 coastally trapped disturbance. Mon. Wea. Rev., 126, 24352465, doi:10.1175/1520-0493(1998)126<2435:OAAOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantanen, M., J. Raisanen, J. Lento, O. Stepanyuk, O. Raty, V. Sinclair, and H. Jarvinen, 2017: OZO v.1.0: Software for solving a generalised omega equation and the Zwack–Okossi height tendency equation using WRF model output. Geosci. Model Dev., 10, 827841, doi:10.5194/gmd-10-827-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2004: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. Wea. Forecasting, 19, 301309, doi:10.1175/1520-0434(2004)019<0301:AYCRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., 1990: Quasi-geostrophic lee cyclogenesis. J. Atmos. Sci., 47, 30443066, doi:10.1175/1520-0469(1990)047<3044:QGLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, doi:10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. B., 1984: A theory of lee cyclogenesis. J. Atmos. Sci., 41, 11591168, doi:10.1175/1520-0469(1984)041<1159:ATOLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J.-H., and F. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the mei-yu front over the east China plains. Mon. Wea. Rev., 140, 379397, doi:10.1175/MWR-D-11-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J.-H., S.-X. Zhao, G.-K. Xu, and Q.-T. Meng, 2010: Study on a mesoscale convective vortex causing heavy rainfall during the mei-yu season in 2003. Adv. Atmos. Sci., 27, 11931209, doi:10.1007/s00376-009-9156-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., 1980: Rainstorms in China. Science Press, 225 pp.

  • Van de Wiel, B. J., A. Moene, G. Steeneveld, P. Baas, F. Bosveld, and A. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, doi:10.1175/2010JAS3289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q.-W., and Z.-M. Tan, 2014: Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res. Atmos., 119, 11 54311 561, doi:10.1002/2014JD021898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., H. S. Zhang, and X. X. Ye, 2014: Comparison of low-level jets along the north coast of China in summer. J. Geophys. Res. Atmos., 119, 96929706, doi:10.1002/2014JD021476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y.-M., W.-L. Gu, R.-L. Zhao, and J. Liu, 2010: The statistical analysis of low vortex during Meiyu season in the lower reaches of the Yangtze (in Chinese). J. Appl. Meteor. Sci., 21, 1118.

    • Search Google Scholar
    • Export Citation
  • Ye, D.-Z., 1952: Effect of Tibet Plateau on the seasonal change of the atmospheric circulation. Acta Meteor. Sin., 22, 3347.

  • Zhang, D.-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 27632785, doi:10.1175/1520-0493(1992)120<2763:TFOACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J.-P., S.-M. Fu, J.-H. Sun, X.-Y. Shen, and Y.-C. Zhang, 2015: A statistical and compositional study on the two types of mesoscale vortices over the Yangtze River basin. Climatic Environ. Res., 20, 319336.

    • Search Google Scholar
    • Export Citation
  • Zhao, S.-X., and Coauthors, 2004: Study on Mechanism of Formation and Development of Heavy Rainfalls on Meiyu Front in Yangtze River. China Meteorological Press, 282 pp.

  • Zhou, Y.-S., and B. Li, 2010: Structural analyses of vortex causing torrential rain over the Changjiang-Huaihe River basin during 8 and 9 July 2003. Chin. J. Atmos. Sci., 34, 629639.

    • Search Google Scholar
    • Export Citation