On the Quantification of Imbalance and Inertia–Gravity Waves Generated in Numerical Simulations of Moist Baroclinic Waves Using the WRF Model

Mohammad Mirzaei Institute of Geophysics, University of Tehran, Tehran, Iran

Search for other papers by Mohammad Mirzaei in
Current site
Google Scholar
PubMed
Close
,
Ali R. Mohebalhojeh Institute of Geophysics, University of Tehran, Tehran, Iran

Search for other papers by Ali R. Mohebalhojeh in
Current site
Google Scholar
PubMed
Close
,
Christoph Zülicke Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany

Search for other papers by Christoph Zülicke in
Current site
Google Scholar
PubMed
Close
, and
Riwal Plougonven Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Universit Paris-Saclay, CNRS, Palaiseau, France

Search for other papers by Riwal Plougonven in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Quantification of inertia–gravity waves (IGWs) generated by upper-level jet–surface front systems and their parameterization in global models of the atmosphere relies on suitable methods to estimate the strength of IGWs. A harmonic divergence analysis (HDA) that has been previously employed for quantification of IGWs combines wave properties from linear dynamics with a sophisticated statistical analysis to provide such estimates. A question of fundamental importance that arises is how the measures of IGW activity provided by the HDA are related to the measures coming from the wave–vortex decomposition (WVD) methods. The question is addressed by employing the nonlinear balance relations of the first-order δγ, the Bolin–Charney, and the first- to third-order Rossby number expansion to carry out WVD. The global kinetic energy of IGWs given by the HDA and WVD are compared in numerical simulations of moist baroclinic waves by the Weather Research and Forecasting (WRF) Model in a channel on the f plane. The estimates of the HDA are found to be 2–3 times smaller than those of the optimal WVD. This is in part due to the absence of a well-defined scale separation between the waves and vortical flows, the IGW estimates by the HDA capturing only the dominant wave packets and with limited scales. It is also shown that the difference between the HDA and WVD estimates is related to the width of the IGW spectrum.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175_JAS-D-16-0366.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mohammad Mirzaei, mirzaeim@ut.ac.ir

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

Quantification of inertia–gravity waves (IGWs) generated by upper-level jet–surface front systems and their parameterization in global models of the atmosphere relies on suitable methods to estimate the strength of IGWs. A harmonic divergence analysis (HDA) that has been previously employed for quantification of IGWs combines wave properties from linear dynamics with a sophisticated statistical analysis to provide such estimates. A question of fundamental importance that arises is how the measures of IGW activity provided by the HDA are related to the measures coming from the wave–vortex decomposition (WVD) methods. The question is addressed by employing the nonlinear balance relations of the first-order δγ, the Bolin–Charney, and the first- to third-order Rossby number expansion to carry out WVD. The global kinetic energy of IGWs given by the HDA and WVD are compared in numerical simulations of moist baroclinic waves by the Weather Research and Forecasting (WRF) Model in a channel on the f plane. The estimates of the HDA are found to be 2–3 times smaller than those of the optimal WVD. This is in part due to the absence of a well-defined scale separation between the waves and vortical flows, the IGW estimates by the HDA capturing only the dominant wave packets and with limited scales. It is also shown that the difference between the HDA and WVD estimates is related to the width of the IGW spectrum.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175_JAS-D-16-0366.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mohammad Mirzaei, mirzaeim@ut.ac.ir

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 203.50 KB)
Save
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, doi:10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, doi:10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, doi:10.1002/2015GL063298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., A. M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562, doi:10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbert, C., R. Marino, D. Rosenberg, and A. Pouquet, 2016: Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech., 806, 165204, doi:10.1017/jfm.2016.581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacher, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, doi:10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326, doi:10.1175/2008JAS2538.1.

  • McIntyre, M. E., 2015: Balanced flow. Encyclopedia of Atmospheric Sciences, 2nd ed. J. Pyle and F. Zhang, Eds., Vol. 2, Elsevier, 298–303.

    • Crossref
    • Export Citation
  • McIntyre, M. E., and W. A. Norton, 2000: Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 12141235, doi:10.1175/1520-0469(2000)057<1214:PVIOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirzaei, M., A. R. Mohebalhojeh, and F. Ahmadi-Givi, 2012: On imbalance generated by vortical flows in a two-layer spherical Boussinesq primitive equation model. J. Atmos. Sci., 69, 28192834, doi:10.1175/JAS-D-11-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirzaei, M., C. Zülicke, A. R. Mohebalhojeh, F. Ahmadi-Givi, and R. Plougonven, 2014: Structure, energy, and parameterization of inertia–gravity waves in dry and moist simulations of a baroclinic wave life cycle. J. Atmos. Sci., 71, 23902414, doi:10.1175/JAS-D-13-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., 2002: On shallow water potential vorticity inversion by Rossby-number expansions. Quart. J. Roy. Meteor. Soc., 128, 679694, doi:10.1256/003590002321042144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., and D. G. Dritschel, 2000: On the representation of gravity waves in numerical models of the shallow water equations. Quart. J. Roy. Meteor. Soc., 126, 669688, doi:10.1002/qj.49712656314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., and D. G. Dritschel, 2001: Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci., 58, 24112426, doi:10.1175/1520-0469(2001)058<2411:HOBCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., and D. G. Dritschel, 2004: Contour-advective semi-Lagrangian algorithms for many-layer primitive-equation models. Quart. J. Roy. Meteor. Soc., 130, 347364, doi:10.1256/qj.03.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., and M. E. McIntyre, 2007: Local mass conservation and velocity splitting in PV-based balanced models. Part I: The hyperbalance equations. J. Atmos. Sci., 64, 17821793, doi:10.1175/JAS3933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., and J. Theiss, 2011: The assessment of the equatorial counterpart of the quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 137, 13271339, doi:10.1002/qj.835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, https://doi.org/10.1029/2005GL023730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2007: On the forcing of inertia–gravity waves by synoptic-scale flows. J. Atmos. Sci., 64, 17371742, doi:10.1175/JAS3901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, doi:10.1002/2012RG000419.

  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, doi:10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snyder, C., D. J. Muraki, R. Plougonven, and F. Zhang, 2007: Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 44174431, doi:10.1175/2007JAS2351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804, doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 1996: Potential vorticity inversion and balanced equations of motion for rotating and stratified flows. Quart. J. Roy. Meteor. Soc., 122, 291322, doi:10.1002/qj.49712252912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, doi:10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, A., 2007: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech., 593, 359383, doi:10.1017/S0022112007008816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135, 670688, doi:10.1175/MWR3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warn, T. O., O. Bokhove, T. G. Shepherd, and G. K. Vallis, 1995: Rossby number expansions, slaving principles, and balance dynamics. Quart. J. Roy. Meteor. Soc., 121, 723739, doi:10.1002/qj.49712152313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., F. Zhang, and J. H. Richter, 2016: An analysis of gravity wave spectral characteristics in moist baroclinic jet–front systems. J. Atmos. Sci., 73, 31333155, doi:10.1175/JAS-D-15-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., and D. H. W. Peters, 2006: Simulation of inertia–gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci., 63, 32533276, doi:10.1175/JAS3805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., and D. H. W. Peters, 2008: Parameterization of strong stratospheric inertia–gravity waves forced by poleward-breaking Rossby waves. Mon. Wea. Rev., 136, 98119, doi:10.1175/2007MWR2060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 542 216 10
PDF Downloads 205 42 2