Scaling Analysis of Temperature and Liquid Water Content in the Marine Boundary Layer Clouds during POST

Yong-Feng Ma Faculty of Physics, Institute of Geophysics, University of Warsaw, Warsaw, Poland

Search for other papers by Yong-Feng Ma in
Current site
Google Scholar
PubMed
Close
,
Szymon P. Malinowski Faculty of Physics, Institute of Geophysics, University of Warsaw, Warsaw, Poland

Search for other papers by Szymon P. Malinowski in
Current site
Google Scholar
PubMed
Close
,
Katarzyna Karpińska Faculty of Physics, Institute of Geophysics, University of Warsaw, Warsaw, Poland

Search for other papers by Katarzyna Karpińska in
Current site
Google Scholar
PubMed
Close
,
Hermann E. Gerber Gerber Scientific Inc., Reston, Virginia

Search for other papers by Hermann E. Gerber in
Current site
Google Scholar
PubMed
Close
, and
Wojciech Kumala Faculty of Physics, Institute of Geophysics, University of Warsaw, Warsaw, Poland

Search for other papers by Wojciech Kumala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors have analyzed the scaling behavior of marine boundary layer (MBL) clouds using high-resolution temperature (T) and liquid water content (LWC) fluctuations from aircraft measurements collected over the Pacific Ocean during the Physics of Stratocumulus Top (POST) research campaign in summer of 2008. As an extension of the past studies for scale-invariant properties of MBL clouds, the authors studied the variability of scaling exponents with height. The results showed that both LWC and T have two distinct scaling regimes: the first one displays scale invariance over a range from about 1–5 m to at least 7 km, and the second one goes from about 0.1–1 to 1–5 m. For the large-scale regime (r > 1–5 m), turbulence in MBL clouds is multifractal, while scale break and scaling exponents vary with height, most significantly in the cloud-top region. For example, LWC spectral exponent β increases from 1.42 at cloud base to 1.58 at cloud top, while scale break decreases from ~5 m at cloud base to 0.8 m at cloud top. The bifractal parameters (H1, C1) for LWC increase from (0.14, 0.02) at cloud base to (0.33, 0.1) at cloud top while maintaining a statistically significant linear relationship C1 ≈ 0.4H1 − 0.04 in MBL clouds. From near surface to cloud top, (H1, C1) for T also increase with height, but above cloud top H1 increases and C1 decreases with height. The results suggest the existence of three turbulence regimes: near the surface, in the middle of the boundary layer, and in the cloud-top region, which need to be distinguished.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Feng Ma, yfma@fuw.edu.pl

Abstract

The authors have analyzed the scaling behavior of marine boundary layer (MBL) clouds using high-resolution temperature (T) and liquid water content (LWC) fluctuations from aircraft measurements collected over the Pacific Ocean during the Physics of Stratocumulus Top (POST) research campaign in summer of 2008. As an extension of the past studies for scale-invariant properties of MBL clouds, the authors studied the variability of scaling exponents with height. The results showed that both LWC and T have two distinct scaling regimes: the first one displays scale invariance over a range from about 1–5 m to at least 7 km, and the second one goes from about 0.1–1 to 1–5 m. For the large-scale regime (r > 1–5 m), turbulence in MBL clouds is multifractal, while scale break and scaling exponents vary with height, most significantly in the cloud-top region. For example, LWC spectral exponent β increases from 1.42 at cloud base to 1.58 at cloud top, while scale break decreases from ~5 m at cloud base to 0.8 m at cloud top. The bifractal parameters (H1, C1) for LWC increase from (0.14, 0.02) at cloud base to (0.33, 0.1) at cloud top while maintaining a statistically significant linear relationship C1 ≈ 0.4H1 − 0.04 in MBL clouds. From near surface to cloud top, (H1, C1) for T also increase with height, but above cloud top H1 increases and C1 decreases with height. The results suggest the existence of three turbulence regimes: near the surface, in the middle of the boundary layer, and in the cloud-top region, which need to be distinguished.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Feng Ma, yfma@fuw.edu.pl
Save
  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc., 69, 618626, https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. Part I: General discussion and the case of small conductivity. J. Fluid Mech., 5, 113133, https://doi.org/10.1017/S002211205900009X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berton, R. P. H., 2008: Analysis of physical parameters measured during the ECRIN 96 Experiment. Atmos. Res., 89, 3047, https://doi.org/10.1016/j.atmosres.2007.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biferale, L., I. Daumont, A. Lanotte, and F. Toschi, 2004: Theoretical and numerical study of highly anisotropic turbulent flows. Eur. J. Mech., 23B, 401414, https://doi.org/10.1016/j.euromechflu.2003.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, P. B. Krummel, and H. Gerber, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122, 13071339, https://doi.org/10.1002/qj.49712253405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., 1994: Bounded cascade clouds: Albedo and effective thickness. Nonlinear Processes Geophys., 1, 156167, https://doi.org/10.5194/npg-1-156-1994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carman, J. K., D. L. Rossiter, D. Khelif, H. H. Jonsson, I. C. Faloona, and P. Y. Chuang, 2012: Observational constraints on entrainment and the entrainment interface layer in stratocumulus. Atmos. Chem. Phys., 12, 11 13511 152, https://doi.org/10.5194/acp-12-11135-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celani, A., M. Cencini, M. Vergassola, E. Villermaux, and D. Vincenzi, 2005: Shear effects on passive scalar spectra. J. Fluid Mech., 523, 99108, https://doi.org/10.1017/S0022112004002332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513516, https://doi.org/10.1126/science.245.4917.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and J. D. Barrick, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions. 2. Gravity waves, quasi-two-dimensional turbulence, and vertical modes. J. Geophys. Res., 104, 16 29716 308, https://doi.org/10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and G. W. Sachse, 2000: Anomalous scaling of mesoscale tropospheric humidity fluctuations. Geophys. Res. Lett., 27, 377380, https://doi.org/10.1029/1999GL010846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., Y. Kaneda, and K. R. Sreenivasan, 2012: Ten Chapters in Turbulence. Cambridge University Press, 437 pp., doi:10.1017/CBO9781139032810.

    • Crossref
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 80558072, https://doi.org/10.1029/94JD00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996a: Multifractal characterizations of intermittency in nonstationary geophysical signals and fields: A model-based perspective on ergodicity issues illustrated with cloud data. Current Topics in Nonstationary Analysis, G. Treviño et al., Eds., World Scientific, 97–158.

  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996b: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558, https://doi.org/10.1175/1520-0469(1996)053<1538:SIOLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, R. Cahalan, and W. Wiscombe, 1997: The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: Implications for cloud remote sensing. J. Atmos. Sci., 54, 241260, https://doi.org/10.1175/1520-0469(1997)054<0241:TLSBIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, H. Gerber, and W. J. Wiscombe, 1999: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. J. Geophys. Res., 104, 61236144, https://doi.org/10.1029/1998JD200078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallah, B., A. A. Saberi, and S. Sodoudi, 2016: Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction. Sci. Rep., 6, 34 005, https://doi.org/10.1038/srep34005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., C. Kiemle, and G. C. Craig, 2012: Height-resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett., 39, L06803, https://doi.org/10.1029/2011GL050621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., G. C. Craig, and C. Kiemle, 2013: Horizontal structure function and vertical correlation analysis of mesoscale water vapor variability observed by airborne lidar. J. Geophys. Res. Atmos., 118, 75797590, https://doi.org/10.1002/jgrd.50588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, https://doi.org/10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., J. B. Jensen, A. B. Davis, A. Marshak, and W. J. Wiscombe, 2001: Spectral density of cloud liquid water content at high frequencies. J. Atmos. Sci., 58, 497503, https://doi.org/10.1175/1520-0469(2001)058<0497:SDOCLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. Malinowski, J. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459, https://doi.org/10.1175/JAS-3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. Malinowski, W. Kumula, and S. Krueger, 2010: POST—A new look at stratocumulus. 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., 10.1, https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_170431.htm.

  • Gerber, H., G. Frick, S. Malinowski, H. Jonsson, D. Khelif, and S. K. Krueger, 2013: Entrainment rates and microphysics in POST stratocumulus. J. Geophys. Res. Atmos., 118, 12 09412 109, https://doi.org/doi:10.1002/jgrd.50878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, C. H., and W. H. Schwarz, 1963: The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech., 16, 365384, https://doi.org/10.1017/S0022112063000835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, H. L., B. A. Hughes, W. M. Vogel, and A. Moilliet, 1968: The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech., 34, 423442, https://doi.org/10.1017/S0022112068001990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J.-L. Brenguier, 2007: Small scale mixing processes at the top of a marine stratocumulus—A case study. Quart. J. Roy. Meteor. Soc., 133, 213226, https://doi.org/10.1002/qj.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1989: Structure functions and spectra of scalar quantities in the inertial–convective and viscous–convective ranges of turbulence. J. Atmos. Sci., 46, 22452251, https://doi.org/10.1175/1520-0469(1989)046<2245:SFASOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., 2001: Effect of condensation and evaporation on the viscous-convective subrange. Phys. Fluids, 13, 713722, https://doi.org/10.1063/1.1343481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jen-La Plante, I., and Coauthors, 2016: Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys., 16, 97119725, https://doi.org/10.5194/acp-16-9711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, https://doi.org/10.1175/2011JAS3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopec, M. K., S. P. Malinowski, and Z. P. Piotrowski, 2016: Effects of wind shear and radiative cooling on the stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 142, 32223233, https://doi.org/10.1002/qj.2903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumala, W., K. E. Haman, M. K. Kopec, D. Khelif, and S. P. Malinowski, 2013: Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST). Atmos. Meas. Tech., 6, 20432054, https://doi.org/10.5194/amt-6-2043-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., I. M. Cohen, P. S. Ayyaswamy, and H. H. Hu, 2008: Fluid Mechanics. Academic Press, 872 pp.

  • Malinowski, S. P., M. Y. Leclerc, and D. G. Baumgardner, 1994: Fractal analyses of high-resolution cloud droplet measurements. J. Atmos. Sci., 51, 397413, https://doi.org/10.1175/1520-0469(1994)051<0397:FAOHRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., M. Andrejczuk, W. W. Grabowski, P. Korczyk, T. A. Kowalewski, and P. K. Smolarkiewicz, 2008: Laboratory and modeling studies of cloud–clear air interfacial mixing: Anisotropy of small-scale turbulence due to evaporative cooling. New J. Phys., 10, 075020, https://doi.org/10.1088/1367-2630/10/7/075020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., and Coauthors, 2013: Physics of Stratocumulus Top (POST): Turbulent mixing across capping inversion. Atmos. Chem. Phys., 13, 12 17112 186, https://doi.org/10.5194/acp-13-12171-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54, 14231444, https://doi.org/10.1175/1520-0469(1997)054<1423:SIILWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, 874 pp.

  • Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski, 2016: Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer. J. Adv. Model. Earth Syst., 8, 885903, https://doi.org/10.1002/2015MS000572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1996: Anomalous scaling of high cloud variability in the tropical Pacific. Geophys. Res. Lett., 23, 10951098, https://doi.org/10.1029/96GL01121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., W. D. Collins, and A. R. Desai, 2014: The spatial scale dependence of water vapor variability inferred from observations from a very tall tower. J. Geophys. Res. Atmos., 119, 98229837, doi:10.1002/2013JD021141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424, https://doi.org/10.1175/2007JAS2455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2009: Three-dimensional (3D) turbulence. Elements of Physical Oceanography: A Derivative of the Encyclopedia of Ocean Sciences, J. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press, 367–374.

  • Stanfield, R. E., X. Dong, B. Xi, A. Kennedy, A. D. Del Genio, P. Minnis, and J. H. Jiang, 2014: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part I: Cloud fraction and properties. J. Climate, 27, 41894208, https://doi.org/10.1175/JCLI-D-13-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., and B. Galperin, 2013: An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification. Philos. Trans. Roy. Soc. London, A371, 20120212, doi:10.1098/rsta.2012.0212.

    • Search Google Scholar
    • Export Citation
  • Tuck, A. F., 2010: From molecules to meteorology via turbulent scale invariance. Quart. J. Roy. Meteor. Soc., 136, 11251144, https://doi.org/10.1002/qj.644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 12971307, https://doi.org/10.1175/1520-0469(1974)031<1297:ALMOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 415 138 6
PDF Downloads 219 58 4