A New Interpretation of Vortex-Split Sudden Stratospheric Warmings in Terms of Equilibrium Statistical Mechanics

Yuki Yasuda Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Yuki Yasuda in
Current site
Google Scholar
PubMed
Close
,
Freddy Bouchet Laboratoire de Physique, Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS, Lyon, France

Search for other papers by Freddy Bouchet in
Current site
Google Scholar
PubMed
Close
, and
Antoine Venaille Laboratoire de Physique, Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS, Lyon, France

Search for other papers by Antoine Venaille in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vortex-split sudden stratospheric warmings (S-SSWs) are investigated by using the Japanese 55-year Reanalysis, a spherical barotropic quasigeostrophic (QG) model, and equilibrium statistical mechanics. The statistical mechanics theory predicts a large-scale steady state as the most probable outcome of turbulent stirring, and such a state can be computed without describing all the details of the dynamics. The theory is applied to a disk domain that is modeled on the polar cap north of 45°N in the stratosphere. The equilibrium state is obtained by computing the maximum of an entropy functional. In the range of parameters relevant to the winter stratosphere, this state is anticyclonic. By contrast, cyclonic states are quasi-stationary states corresponding to saddle points of the entropy functional. These results indicate that the mean state of the stratosphere associated with the polar vortex is not close to an equilibrium state but to a quasi-stationary state. The theoretical calculations are compared with the results of a quasi-static experiment in which a wavenumber-2 topographic amplitude is increased linearly and slowly with time. The results suggest that the S-SSW can be qualitatively interpreted as the transition from the cyclonic quasi-stationary state toward the anticyclonic equilibrium state. The polar vortex splits during the transition toward the equilibrium state.

Current affiliation: Mitsubishi UFJ Morgan Stanley Securities Co., Ltd., Tokyo, Japan.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0045.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Yasuda, yuki.yasuda@17.alumni.u-tokyo.ac.jp

Abstract

Vortex-split sudden stratospheric warmings (S-SSWs) are investigated by using the Japanese 55-year Reanalysis, a spherical barotropic quasigeostrophic (QG) model, and equilibrium statistical mechanics. The statistical mechanics theory predicts a large-scale steady state as the most probable outcome of turbulent stirring, and such a state can be computed without describing all the details of the dynamics. The theory is applied to a disk domain that is modeled on the polar cap north of 45°N in the stratosphere. The equilibrium state is obtained by computing the maximum of an entropy functional. In the range of parameters relevant to the winter stratosphere, this state is anticyclonic. By contrast, cyclonic states are quasi-stationary states corresponding to saddle points of the entropy functional. These results indicate that the mean state of the stratosphere associated with the polar vortex is not close to an equilibrium state but to a quasi-stationary state. The theoretical calculations are compared with the results of a quasi-static experiment in which a wavenumber-2 topographic amplitude is increased linearly and slowly with time. The results suggest that the S-SSW can be qualitatively interpreted as the transition from the cyclonic quasi-stationary state toward the anticyclonic equilibrium state. The polar vortex splits during the transition toward the equilibrium state.

Current affiliation: Mitsubishi UFJ Morgan Stanley Securities Co., Ltd., Tokyo, Japan.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0045.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Yasuda, yuki.yasuda@17.alumni.u-tokyo.ac.jp

Supplementary Materials

    • Supplemental Materials (ZIP 15.54 MB)
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and P. D. Williams, 2008: Sudden stratospheric warmings as noise-induced transitions. J. Atmos. Sci., 65, 33373343, doi:10.1175/2008JAS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, R. X., and B. A. McDaniel, 2007: The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 64, 29322946, doi:10.1175/JAS3981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., 2008: Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions. Physica D, 237, 19761981, doi:10.1016/j.physd.2008.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and J. Sommeria, 2002: Emergence of intense jets and Jupiter’s great red spot as maximum-entropy structures. J. Fluid Mech., 464, 165207, doi:10.1017/S0022112002008789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and A. Venaille, 2012: Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep., 515, 227295, doi:10.1016/j.physrep.2012.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, doi:10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1985: Sudden stratospheric warmings as catastrophes. J. Atmos. Sci., 42, 16311646, doi:10.1175/1520-0469(1985)042<1631:SSWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanis, P. H., and J. Sommeria, 1996: Classification of self-organized vortices in two-dimensional turbulence: The case of a bounded domain. J. Fluid Mech., 314, 267297, doi:10.1017/S0022112096000316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2000: Chaos, quasiperiodicity, and interannual variability: Studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 31613173, doi:10.1175/1520-0469(2000)057<3161:CQAIVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, R. S., K. Haven, and B. Turkington, 2002: Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity, 15, 239255, doi:10.1088/0951-7715/15/2/302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., 2008: The turbulent equilibration of an unstable baroclinic jet. J. Fluid Mech., 599, 241268, doi:10.1017/S0022112008000153.

  • Esler, J. G., and R. K. Scott, 2005: Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci., 62, 36613682, doi:10.1175/JAS3557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and N. J. Matthewman, 2011: Stratospheric sudden warmings as self-tuning resonances. Part II: Vortex displacement events. J. Atmos. Sci., 68, 25052523, doi:10.1175/JAS-D-11-08.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfand, I. M., and S. V. Fomin, 2000: Calculus of Variations. Dover Publications, 240 pp.

  • Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, doi:10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2011: Improved predictability of the troposphere using stratospheric final warmings. J. Geophys. Res., 116, D18113, doi:10.1029/2011JD015914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, doi:10.1146/annurev.fluid.37.061903.175710.

  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, doi:10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225, doi:10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishioka, K., 2013: ISPACK Version 1.0.2. Geophysical Fluid Dynamics Dennou Club, http://www.gfd-dennou.org/arch/ispack/index.htm.en.

  • Japan Meteorological Agency, 2014: JRA-55—The Japanese 55-year Reanalysis. Japan Meteorological Agency, accessed 11 June 2014, http://jra.kishou.go.jp/JRA-55/index_en.html.

  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, doi:10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., and R. K. Scott, 2015: The onset of the barotropic sudden warming in a global model. Quart. J. Roy. Meteor. Soc., 141, 29442955, doi:10.1002/qj.2580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 564 pp.

    • Crossref
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and J. G. Esler, 2011: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 24812504, doi:10.1175/JAS-D-11-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., A. J. Charlton, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, doi:10.1175/2008JCLI2365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 94310 951, doi:10.1002/2015GL066754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • McIntyre, M. E., and T. N. Palmer, 1984: The “surf zone” in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, doi:10.1016/0021-9169(84)90063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 1998: Effects of stratification on quasi-geostrophic inviscid equilibria. J. Fluid Mech., 354, 345356, doi:10.1017/S0022112097007684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J., 1990: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65, 21372140, doi:10.1103/PhysRevLett.65.2137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MirRokni, S. M., A. R. Mohebalhojeh, and D. G. Dritschel, 2011: Revisiting vacillations in shallow-water models of the stratosphere using potential-vorticity-based numerical algorithms. J. Atmos. Sci., 68, 10071022, doi:10.1175/2011JAS3622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, and L. Pandolfo, 2003: The vertical structure of wintertime climate regimes of the Northern Hemisphere extratropical atmosphere. J. Climate, 16, 20052021, doi:10.1175/1520-0442(2003)016<2005:TVSOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, doi:10.1029/2006GL025719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 94719478, doi:10.1029/96JD00066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naso, A., P. H. Chavanis, and B. Dubrulle, 2010: Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. Eur. Phys. J., 77B, 187212, doi:10.1140/epjb/e2010-00269-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1981a: Forced waves in a baroclinic shear flow. Part 2: Damped and undamped response to weak near-resonant forcing. J. Atmos. Sci., 38, 18561869, doi:10.1175/1520-0469(1981)038<1856:FWIABS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1981b: Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 25142531, doi:10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, and R. A. Plumb, 1995: On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci., 52, 12881309, doi:10.1175/1520-0469(1995)052<1288:OTSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, R., and W. H. Schubert, 2001: Analytical predictions for zonally symmetric equilibrium states of the stratospheric polar vortex. J. Atmos. Sci., 58, 27092728, doi:10.1175/1520-0469(2001)058<2709:APFZSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, R., J. P. Kossin, and W. H. Schubert, 2001: Symmetrization of lopsided vorticity monopoles and offset hurricane eyes. Quart. J. Roy. Meteor. Soc., 127, 23072327, doi:10.1002/qj.49712757706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, R., 1991: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys., 65, 531553, doi:10.1007/BF01053743.

  • Robert, R., and J. Sommeria, 1991: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech., 229, 291310, doi:10.1017/S0022112091003038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, P.-P., and D. W. Waugh, 2004: Vacillations in a shallow-water model of the stratosphere. J. Atmos. Sci., 61, 11741185, doi:10.1175/1520-0469(2004)061<1174:VIASMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., J. Lawrence, and C. Cadavid, 2003: A simple model of stratospheric dynamics including solar variability. J. Climate, 16, 15931600, doi:10.1175/1520-0442-16.10.1593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

    • Crossref
    • Export Citation
  • Scott, R. K., 2016: A new class of vacillations of the stratospheric polar vortex. Quart. J. Roy. Meteor. Soc., 142, 19481957, doi:10.1002/qj.2788.

  • Scott, R. K., and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776, doi:10.1175/JAS3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, doi:10.1002/grl.50927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 34203432, doi:10.1175/JAS-D-11-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2014: Stratospheric wave–mean flow feedbacks and sudden stratospheric warmings in a simple model forced by upward wave activity flux. J. Atmos. Sci., 71, 40554071, doi:10.1175/JAS-D-14-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and R. S. Lindzen, 1979a: A theory of stationary long waves. Part I: A simple theory of blocking. Mon. Wea. Rev., 107, 714734, doi:10.1175/1520-0493(1979)107<0714:ATOSLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and R. S. Lindzen, 1979b: A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev., 107, 735750, doi:10.1175/1520-0493(1979)107<0735:ATOSLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Venaille, A., 2012: Bottom-trapped currents as statistical equilibrium states above topographic anomalies. J. Fluid Mech., 699, 500510, doi:10.1017/jfm.2012.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., and F. Bouchet, 2009: Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows. Phys. Rev. Lett., 102, 104501, doi:10.1103/PhysRevLett.102.104501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., and F. Bouchet, 2011a: Ocean rings and jets as statistical equilibrium states. J. Phys. Oceanogr., 41, 18601873, doi:10.1175/2011JPO4583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., and F. Bouchet, 2011b: Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows. J. Stat. Phys., 143, 346380, doi:10.1007/s10955-011-0168-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2010: Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 43–57, doi:10.1002/9781118666630.ch3.

    • Crossref
    • Export Citation
  • Yoden, S., 1987: Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 17231733, doi:10.1175/1520-0469(1987)044<1723:BPOASV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 74 5
PDF Downloads 235 52 2