On the Forcing of the Summertime Great Plains Low-Level Jet

Thomas R. Parish Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Thomas R. Parish in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The low-level jet (LLJ) is a ubiquitous feature of the lower atmosphere over the Great Plains during summer. The LLJ is a nocturnal phenomenon, developing during the 6–9-h period after sunset. Forcing of the LLJ has been debated for over 60 years, the focus being on two processes: decoupling of the residual layer from the surface owing to nighttime cooling and diurnal heating and cooling of the sloping Great Plains topography.

To examine characteristics and forcing mechanisms for the LLJ, composite grids were compiled from the North American Mesoscale Forecast System for the summertime months of June and July over a 5-yr period (2008–12). One composite set was assembled from well-developed LLJ episodes during which the maximum nocturnal jet magnitude at 0900 UTC over northwestern Oklahoma exceeded 20 m s−1. A second set consists of nonjet conditions for which the maximum nighttime wind magnitude in the lowest 3 km did not exceed 10 m s−1.

The intensity of the horizontal pressure gradient and hence background geostrophic flow at jet level was the dominant difference between composite cases. The horizontal pressure gradient forms in response to the thermal wind above jet level that results primarily from seasonal heating of the sloping Great Plains. Thermal wind forcing is thus the key link between the Great Plains and the high frequency of LLJ occurrence. The nocturnal wind maximum develops primarily because of the inertial oscillation of the ageostrophic wind occurring after decoupling of the lower atmosphere from the surface owing to radiational cooling in the early evening.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas R. Parish, parish@uwyo.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

The low-level jet (LLJ) is a ubiquitous feature of the lower atmosphere over the Great Plains during summer. The LLJ is a nocturnal phenomenon, developing during the 6–9-h period after sunset. Forcing of the LLJ has been debated for over 60 years, the focus being on two processes: decoupling of the residual layer from the surface owing to nighttime cooling and diurnal heating and cooling of the sloping Great Plains topography.

To examine characteristics and forcing mechanisms for the LLJ, composite grids were compiled from the North American Mesoscale Forecast System for the summertime months of June and July over a 5-yr period (2008–12). One composite set was assembled from well-developed LLJ episodes during which the maximum nocturnal jet magnitude at 0900 UTC over northwestern Oklahoma exceeded 20 m s−1. A second set consists of nonjet conditions for which the maximum nighttime wind magnitude in the lowest 3 km did not exceed 10 m s−1.

The intensity of the horizontal pressure gradient and hence background geostrophic flow at jet level was the dominant difference between composite cases. The horizontal pressure gradient forms in response to the thermal wind above jet level that results primarily from seasonal heating of the sloping Great Plains. Thermal wind forcing is thus the key link between the Great Plains and the high frequency of LLJ occurrence. The nocturnal wind maximum develops primarily because of the inertial oscillation of the ageostrophic wind occurring after decoupling of the lower atmosphere from the surface owing to radiational cooling in the early evening.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas R. Parish, parish@uwyo.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellamy, J. C., 1945: The use of pressure altitude and altimeter corrections in meteorology. J. Meteor., 2, 179, https://doi.org/10.1175/1520-0469(1945)002<0001:TUOPAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytic model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, https://doi.org/10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and M. D. McCorcle, 1990: A two-dimensional numerical sensitivity study of the Great Plains low-level jet. Mon. Wea. Rev., 118, 151164, https://doi.org/10.1175/1520-0493(1990)118<0151:ATDNSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci., 74, 28132834, https://doi.org/10.1175/JAS-D-17-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., B. W. Orr, and B. E. Martner, 1992: Doppler radar observations of the development of a boundary-layer nocturnal jet. Mon. Wea. Rev., 120, 316, https://doi.org/10.1175/1520-0493(1992)120<0003:DROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, https://doi.org/10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547, https://doi.org/10.1175/JAS3847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H., 1967: Small to large-scale features of boundary layer structure over mountain slopes. Proc. Symp. on Mountain Meteorology, Fort Collins, CO, Colorado State University Dept. of Atmospheric Science, 1–74.

  • Lettau, H., and B. Davidson, 1957: Exploring the Atmosphere’s First Mile. Vol. 1. Pergamon Press, 376 pp.

  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

    • Crossref
    • Export Citation
  • McNider, R. T., and R. A. Pielke, 1981: Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci., 38, 21982212, https://doi.org/10.1175/1520-0469(1981)038<2198:DBLDOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1954: A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the Middle West. Bull. Amer. Meteor. Soc., 35, 166170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., M. D. Simpson, J. D. Fast, L. K. Berg, and R. L. Baskett, 2016: Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting Model. Wind Energy, 19, 739762, https://doi.org/10.1002/we.1862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, https://doi.org/10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., M. Segal, and R. W. Arritt, 2004: Role of topography in forcing low-level jets in central United States during the 1993 flood-altered terrain simulations. Mon. Wea. Rev., 132, 396403, https://doi.org/10.1175/1520-0493(2004)132<0396:ROTIFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2016: A comparative study of the 3 June 2015 Great Plains low-level jet. Mon. Wea. Rev., 144, 29632979, https://doi.org/10.1175/MWR-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, https://doi.org/10.1175/2010JAS3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94105, https://doi.org/10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2016: Research aircraft determination of D-value cross sections. J. Atmos. Oceanic Technol., 33, 391396, https://doi.org/10.1175/JTECH-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangster, W. E., 1967: Diurnal surface geostrophic wind variations over the Great Plains. Preprints, Fifth Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 146–153.

  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet of a shallow slope. Acta Geophys., 57, 950980, https://doi.org/10.2478/s11600-009-0026-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262.

  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains low-level jet. J. Atmos. Sci., 73, 30373056, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting Model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, https://doi.org/10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 2006: The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J. Atmos. Sci., 63, 10561068, https://doi.org/10.1175/JAS3664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108, 16891694, https://doi.org/10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werth, D., R. Kurzeja, N. L. Dias, G. Zhang, H. Duarte, M. Fischer, M. Parker, and M. Leclerc, 2011: The simulation of the southern Great Plains nocturnal boundary layer and the low-level jet with a high-resolution mesoscale atmospheric model. J. Appl. Meteor. Climatol., 50, 14971513, https://doi.org/10.1175/2011JAMC2272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary-layer interpretation of the low-level jet. Tellus, 13, 368378, https://doi.org/10.3402/tellusa.v13i3.9513.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36, 13631375, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6600 5861 2415
PDF Downloads 625 118 9