Isentropic Analysis on the Intensification of Hurricane Edouard (2014)

Juan Fang Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Juan Fang in
Current site
Google Scholar
PubMed
Close
,
Olivier Pauluis Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Olivier Pauluis in
Current site
Google Scholar
PubMed
Close
, and
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An isentropic analysis technique is adopted in this study to investigate the intensification of Hurricane Edouard (2014) predicted by an experimental real-time convection-permitting hurricane analysis and forecast system. This technique separates the vertical mass transport in terms of equivalent potential temperature θe for the rising air parcels at high entropy from the subsiding air at low entropy. It is found that as Edouard intensifies the vertical circulation becomes wider via the expansion of upward (downward) mass flux to higher (lower) θe. In the early developing stages, the asymmetric convection dominates the vertical circulation and leads to a remarkable upward mass flux maximum center in the upper troposphere. When Edouard becomes intense, the axisymmetric convection becomes important to the upper-level vertical mass transport while the asymmetric convection still dominates the low-level vertical mass transport. Development of the warm core in the eye leads to double maxima along the θe axis for both the isentropic-mean relative humidity and tangential velocity. The isentropic-mean properties such as the mid- to upper-level relative humidity, vertical velocity, and radial outflow decrease considerably while the mid- to upper-level vorticity enhances on the high-θe side before the onset of rapid intensification. The isentropic analysis also reveals that as Edouard intensifies the eye characterized by warm and dry core first forms in the low to middle troposphere and then gradually expands upward. The abovementioned results indicate that the isentropic framework may have the advantages of binning common variables with θe that could reflect the changes of the tropical cyclone structure in the inner-core region without a prior specification of the location of the storm center.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Fang, fangjuan@nju.edu.cn

Abstract

An isentropic analysis technique is adopted in this study to investigate the intensification of Hurricane Edouard (2014) predicted by an experimental real-time convection-permitting hurricane analysis and forecast system. This technique separates the vertical mass transport in terms of equivalent potential temperature θe for the rising air parcels at high entropy from the subsiding air at low entropy. It is found that as Edouard intensifies the vertical circulation becomes wider via the expansion of upward (downward) mass flux to higher (lower) θe. In the early developing stages, the asymmetric convection dominates the vertical circulation and leads to a remarkable upward mass flux maximum center in the upper troposphere. When Edouard becomes intense, the axisymmetric convection becomes important to the upper-level vertical mass transport while the asymmetric convection still dominates the low-level vertical mass transport. Development of the warm core in the eye leads to double maxima along the θe axis for both the isentropic-mean relative humidity and tangential velocity. The isentropic-mean properties such as the mid- to upper-level relative humidity, vertical velocity, and radial outflow decrease considerably while the mid- to upper-level vorticity enhances on the high-θe side before the onset of rapid intensification. The isentropic analysis also reveals that as Edouard intensifies the eye characterized by warm and dry core first forms in the low to middle troposphere and then gradually expands upward. The abovementioned results indicate that the isentropic framework may have the advantages of binning common variables with θe that could reflect the changes of the tropical cyclone structure in the inner-core region without a prior specification of the location of the storm center.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Fang, fangjuan@nju.edu.cn
Save
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, doi:10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1971: A numerical model of the slowly varying tropical cyclone in isentropic coordinates. Mon. Wea. Rev., 99, 617635, doi:10.1175/1520-0493(1971)099<0617:ANMOTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672, doi:10.1175/2009JAS3115.1.

  • Fang, J., and F. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122, doi:10.1175/2010JAS3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, doi:10.1175/MWR-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, doi:10.1175/JAS-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, doi:10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., V. Tallapragada, D.-L. Zhang, and Z. Moon, 2016: On the development of double warm-core structures in intense tropical cyclones. J. Atmos. Sci., 73, 44874506, doi:10.1175/JAS-D-16-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., K. Döös, F. B. Laliberté, and J. D. Zika, 2014: The atmospheric general circulation in thermodynamical coordinates. J. Atmos. Sci., 71, 916928, doi:10.1175/JAS-D-13-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laliberté, F., J. Zika, L. Mudryk, P. Kushner, J. Kjellsson, and K. Döös, 2015: Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347, 540543, doi:10.1126/science.1257103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, doi:10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., and C. S. Velden, 1996: A three-dimensional analysis of the outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 4763, doi:10.1175/1520-0493(1996)124<0047:ATDAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, doi:10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., O. M. Pauluis, and F. Zhang, 2016: Isentropic analysis of a simulated hurricane. J. Atmos. Sci., 73, 18571870, doi:10.1175/JAS-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang, 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 45144532, doi:10.1175/MWR-D-14-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, J. A. Sippel, S. A. Braun, and Y. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 573595, doi:10.1175/JAS-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., 2016: The mean air flow as Lagrangian dynamics approximation and its application to moist convection. J. Atmos. Sci., 73, 44074425, doi:10.1175/JAS-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 36733688, doi:10.1175/JAS-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and F. Zhang, 2017: Reconstruction of the thermodynamic cycles in a high-resolution simulation of a hurricane. J. Atmos. Sci., 74, 33673381, doi:10.1175/JAS-D-16-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., A. Czaja, and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093, doi:10.1175/2009JCLI2789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974, doi:10.1175/JAS-D-12-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, doi:10.1175/2010MWR3161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, doi:10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivoire, L., T. Birner, and J. A. Knaff, 2016: Evolution of the upper-level thermal structure in tropical cyclones. Geophys. Res. Lett., 43, 10 53010 537, doi:10.1002/2016GL070622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, doi:10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1937: Isentropic analysis. Bull. Amer. Meteor. Soc., 18, 201209.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583, doi:10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and B. T. Alworth, 1987: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147162, doi:10.1002/qj.49711347509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for research and NWP applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 12271232, doi:10.1175/1520-0469(1980)037<1227:TCED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 18491873, doi:10.1175/JAS-D-12-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2014: Tropical cyclone report: Hurricane Edouard (AL062014). NOAA/National Hurricane Center Tech. Rep. AL062014, 19 pp., http://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.

  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, doi:10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, doi:10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. Zipser, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333353, doi:10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2532, doi:10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 79 14
PDF Downloads 192 60 9