Exact Expression for the Lifting Condensation Level

David M. Romps Department of Earth and Planetary Science, University of California, Berkeley, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many analytic, but approximate, expressions have been proposed for the height of the lifting condensation level (LCL), including the popular expressions by Espy, Bolton, and Lawrence. Here, the exact, explicit, analytic expression is derived for an air parcel’s LCL as a function of its temperature and relative humidity. Unlike previous analytic expressions, some of which can have errors as high as hundreds or thousands of meters, this exact expression is accurate to within the uncertainty of empirical vapor pressure measurements: this translates into an uncertainty of around 5 m for all temperatures and relative humidities. An exact, explicit, analytic expression for the lifting deposition level (LDL) is also derived, and its behavior is compared to the LCL. At sufficiently cold temperatures, aerosols freeze homogeneously below the LCL; an approximate, implicit, analytic expression is given for this lifting freezing level (LFL). By comparing the LCL, LDL, and LFL, it is found that a well-mixed boundary layer can have an ice-supersaturated layer that is no thicker than 400 m.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu

Abstract

Many analytic, but approximate, expressions have been proposed for the height of the lifting condensation level (LCL), including the popular expressions by Espy, Bolton, and Lawrence. Here, the exact, explicit, analytic expression is derived for an air parcel’s LCL as a function of its temperature and relative humidity. Unlike previous analytic expressions, some of which can have errors as high as hundreds or thousands of meters, this exact expression is accurate to within the uncertainty of empirical vapor pressure measurements: this translates into an uncertainty of around 5 m for all temperatures and relative humidities. An exact, explicit, analytic expression for the lifting deposition level (LDL) is also derived, and its behavior is compared to the LCL. At sufficiently cold temperatures, aerosols freeze homogeneously below the LCL; an approximate, implicit, analytic expression is given for this lifting freezing level (LFL). By comparing the LCL, LDL, and LFL, it is found that a well-mixed boundary layer can have an ice-supersaturated layer that is no thicker than 400 m.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu
Save
  • Atreya, S. K., E. Y. Adams, H. B. Niemann, J. E. Demick-Montelara, T. C. Owen, M. Fulchignoni, F. Ferri, and E. H. Wilson, 2006: Titan’s methane cycle. Planet. Space Sci., 54, 11771187, doi:10.1016/j.pss.2006.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bielska, K., D. K. Havey, G. E. Scace, D. Lisak, A. H. Harvey, and J. T. Hodges, 2013: High-accuracy measurements of the vapor pressure of ice referenced to the triple point. Geophys. Res. Lett., 40, 63036307, https://doi.org/10.1002/2013GL058474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., and D. J. Jacob, 2017: Modeling of Atmospheric Chemistry. 1st ed. Cambridge University Press, 632 pp.

    • Crossref
    • Export Citation
  • Cotton, W. R., G. Bryan, and S. C. Van den Heever, 2011: Storm and Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 99, Academic Press, 820 pp.

    • Crossref
    • Export Citation
  • Davis, W. M., 1889: Some American contributions to meteorology. J. Franklin Inst., 127, 176191, doi:10.1016/0016-0032(89)90145-2.

  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espy, J. P., 1836: Essays on meteorology. No. IV: North east storms, volcanoes, and columnar clouds. J. Franklin Inst., 22, 239246, doi:10.1016/S0016-0032(36)91215-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., 2015: Atmospheric water. Proc. Int. School of Physics “Enrico Fermi,” Varenna, Italy, Società Italiana di Fisica, 45–75.

  • Koop, T., B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225233, doi:10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. H., 1963: James Espy and the beginnings of cloud thermodynamics. Bull. Amer. Meteor. Soc., 44, 634641.

  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, doi:10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Riegel, C. A., 1992: Fundamentals of Atmospheric Dynamics and Thermodynamics. 1st ed. World Scientific, 496 pp.

    • Crossref
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, doi:10.1175/2008JAS2679.1.

  • Romps, D. M., 2015: MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. J. Atmos. Sci., 72, 36393646, doi:10.1175/JAS-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonntag, D., 1990: Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae. Z. Meteor., 70, 340344.

    • Search Google Scholar
    • Export Citation
  • Sonntag, D., and D. Heinze, 1982: Sättigungsdampfdruck und Sättigungsdampfdichtetafeln für Wasser und Eis. Verlag, 54 pp.

  • Tsonis, A. A., 2002: An Introduction to Atmospheric Thermodynamics. 1st ed. Cambridge University Press, 171 pp.

  • Wagner, W., and A. Pruß, 2002: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data, 31, 387535, doi:10.1063/1.1461829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., T. Riethmann, R. Feistel, and A. H. Harvey, 2011: New equations for the sublimation pressure and melting pressure of H2O ice Ih. J. Phys. Chem. Ref. Data, 40, 043103, https://doi.org/10.1063/1.3657937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier, 504 pp.

  • Wetzel, P. J., 1990: A simple parcel method for prediction of cumulus onset and area-averaged cloud amount over heterogeneous land surfaces. J. Appl. Meteor., 29, 516523, doi:10.1175/1520-0450(1990)029<0516:ASPMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6017 1335 123
PDF Downloads 5075 1228 113