Multiscale Variability of the Atmospheric Boundary Layer during DYNAMO

Richard H. Johnson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard H. Johnson in
Current site
Google Scholar
PubMed
Close
and
Paul E. Ciesielski Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul E. Ciesielski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Properties of the atmospheric boundary layer (ABL) over the central Indian Ocean are investigated using sounding data obtained during the Dynamics of the MJO (DYNAMO) field campaign in 2011/12. Observations from Gan Island on Addu Atoll, the R/V Revelle, and Malé in the Maldives are used to determine the frequency of well-mixed layers and their mean thermodynamic and wind profiles. Well-mixed boundary layers or mixed layers were observed 68% of the time from the three sites, ranging from ~100-m depth in recovering convective downdraft wakes to ~925 m in undisturbed conditions, with a mean depth of 508 m. At Revelle, the site most representative of the open ocean, the ABL displayed a distinct signal of modulation by the October and November MJOs, with mixed-layer depths gradually increasing through the suppressed phases as the sea surface temperature (SST) increased leading up to the active phases, followed by frequent ABL stabilization and shallow mixed layers in recovering wakes. A distinct diurnal cycle of mixed-layer depths and properties was observed during the MJO suppressed phases in response to a diurnal cycle of the SST under the mostly light-wind, clear-sky conditions. The daytime growth of the mixed layer contributed to an afternoon maximum in cumulus cloud development and rainfall during the suppressed periods by allowing more boundary layer thermals to reach their condensation levels. The variability of the ABL on time scales ranging from convective to diurnal to monthly poses significant challenges for numerical simulations of the MJO and the tropical circulation in general.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard H. Johnson, johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Properties of the atmospheric boundary layer (ABL) over the central Indian Ocean are investigated using sounding data obtained during the Dynamics of the MJO (DYNAMO) field campaign in 2011/12. Observations from Gan Island on Addu Atoll, the R/V Revelle, and Malé in the Maldives are used to determine the frequency of well-mixed layers and their mean thermodynamic and wind profiles. Well-mixed boundary layers or mixed layers were observed 68% of the time from the three sites, ranging from ~100-m depth in recovering convective downdraft wakes to ~925 m in undisturbed conditions, with a mean depth of 508 m. At Revelle, the site most representative of the open ocean, the ABL displayed a distinct signal of modulation by the October and November MJOs, with mixed-layer depths gradually increasing through the suppressed phases as the sea surface temperature (SST) increased leading up to the active phases, followed by frequent ABL stabilization and shallow mixed layers in recovering wakes. A distinct diurnal cycle of mixed-layer depths and properties was observed during the MJO suppressed phases in response to a diurnal cycle of the SST under the mostly light-wind, clear-sky conditions. The daytime growth of the mixed layer contributed to an afternoon maximum in cumulus cloud development and rainfall during the suppressed periods by allowing more boundary layer thermals to reach their condensation levels. The variability of the ABL on time scales ranging from convective to diurnal to monthly poses significant challenges for numerical simulations of the MJO and the tropical circulation in general.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard H. Johnson, johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Augstein, E., H. Schmidt, and F. Ostapoff, 1974: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean. Bound.-Layer Meteor., 6, 129150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016: Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability. J. Geophys. Res. Atmos., 121, 20452059, doi:10.1002/2015JD024150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102117, doi:10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., Y. N. Takayabu, T. Ushiyama, and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, doi:10.1175/2010MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015: Observation of moisture tendencies related to shallow convection. J. Atmos. Sci., 72, 641659, doi:10.1175/JAS-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2015: A study of CINDY/DYNAMO MJO suppressed phase. J. Atmos. Sci., 72, 37553779, doi:10.1175/JAS-D-13-0348.1.

  • Chen, S. S., and Coauthors, 2016: Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bull. Amer. Meteor. Soc., 97, 405423, doi:10.1175/BAMS-D-13-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and C. A. Smith, 1998: Diurnal and semidiurnal variations of the surface wind field over the tropical Pacific Ocean. J. Climate, 11, 17301748, doi:10.1175/1520-0442(1998)011<1730:DASVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, doi:10.1175/JCLI-D-14-00477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74, 11491168, doi:10.1175/JAS-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanism of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, doi:10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and M. Garstang, 1981: Vertical structure of the tropical boundary layer. Mon. Wea. Rev., 109, 15121526, doi:10.1175/1520-0493(1981)109<1512:VSOTTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and L. M. Hartten, 1995: Daily variability of lower tropospheric winds over the tropical western Pacific. J. Geophys. Res., 100, 22 99923 008, doi:10.1029/95JD01879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105, 15401567, doi:10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319, doi:10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034, doi:10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57, 14971514, doi:10.1175/1520-0469(2000)057<1497:RARHRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, doi:10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, doi:10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 19611985, doi:10.1175/1520-0469(1997)054<1961:SAEOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539, doi:10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: On the structure of the trade wind moist layer. MIT and WHOI Papers in Physical Oceanography and Meteorology, Vol. 13, No. 2, 47 pp., doi:10.1575/1912/1065.

    • Crossref
    • Export Citation
  • Malkus, J. S., and M. E. Stern, 1953: The flow of a stable atmosphere over a heated island, part 1. J. Meteor., 10, 3041, doi:10.1175/1520-0469(1953)010<0030:TFOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., D. B. Baranowski, K. J. Heywood, P. J. Flatau, and S. Schmidtko, 2014: The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. J. Climate, 27, 91019122, doi:10.1175/JCLI-D-14-00222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, doi:10.1175/BAMS-D-12-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37, 20512067, doi:10.1175/1520-0469(1980)037<2051:TFWBLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., J.-L. Redelsperger, and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548, doi:10.1002/qj.49712656307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze, 2013: The cloud population and onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze, 2015a: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, doi:10.1002/2014JD022961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015b: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, doi:10.1002/2014JD022934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., H. Yan, L. K. Berg, S. Hagos, Z. Feng, B. Yang, and M. Huang, 2016: Assessing impacts of PBL and surface layer schemes in simulating the surface–atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO. J. Climate, 29, 81918210, doi:10.1175/JCLI-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, doi:10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, doi:10.1175/JAS-D-14-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2016: On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst., 8, 669690, doi:10.1002/2015MS000610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 1998: Surface fluxes and boundary layer recovery in TOGA COARE: Sensitivity to convective organization. J. Atmos. Sci., 55, 27632781, doi:10.1175/1520-0469(1998)055<2763:SFABLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, doi:10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res. I, 44, 10551076, doi:10.1016/S0967-0637(96)00124-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655, doi:10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, doi:10.1175/BAMS-89-4-453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: Cirene: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561, doi:10.1175/2008BAMS2499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Y., and K. C. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech., 7, 17011709, doi:10.5194/amt-7-1701-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, doi:10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 526 235 9
PDF Downloads 237 68 7