• Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, doi:10.1175/MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of vertical motion. J. Atmos. Sci., 63, 1942, doi:10.1175/JAS3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, doi:10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2015: Sensitivity of intensifying Atlantic hurricanes to vortex structure. Quart. J. Roy. Meteor. Soc., 141, 25382551, doi:10.1002/qj.2540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, doi:10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction System (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, doi:10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243242, doi:10.1175/MWR-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., and F. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 3858, doi:10.1002/2013MS000297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, and D. P. Stern, 2013: Predictability and dynamics of a nonintensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 25052524, doi:10.1175/JAS-D-12-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang, 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 45144532, doi:10.1175/MWR-D-14-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771598, doi:10.1175//2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, doi:10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, doi:10.1175/2011JAS3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–4751STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stewart, S. R., 2014: Tropical cyclone report: Hurricane Edouard (AL062014). NOAA/National Hurricane Center Tech. Rep. AL062014, 19 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.]

  • Tang, X., and F. Zhang, 2016: Impacts of the diurnal radiation cycle on the formation, intensity and structure of Hurricane Edouard (2014). J. Atmos. Sci., 73, 28712892, doi:10.1175/JAS-D-15-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, doi:10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst., 7, 15341553, doi:10.1002/2015MS000474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, doi:10.1175/MWR-D-12-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, doi:10.1175/MWR-D-14-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, doi:10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 4, 345358, doi:10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G., 2015: Hurricane and Severe Storm Sentinel (HS3) Global Hawk AVAPS dropsonde system, version 2014 RF05–08. NASA Global Hydrology Resource Center Distributed Active Archive Center, accessed 16 September 2016, doi:10.5067/HS3/AVAPS/DROPSONDE/DATA201.

    • Crossref
    • Export Citation
  • Young, K., T. Hock, and C. Martin, 2016: Hurricane and Severe Storm Sentinel (HS3) 2014 dropsonde data quality report. Version 3.0, National Center for Atmospheric Research (NCAR) Earth Observing Lab (EOL), accessed 16 September 2016. [Available online at http://data.eol.ucar.edu/datafile/nph-get/348.004/readme.V3.HS3-2014.GHdropsonde.pdf.]

  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2532, doi:10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 6
PDF Downloads 46 46 6

Dynamics and Predictability of the Intensification of Hurricane Edouard (2014)

View More View Less
  • 1 Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 I. M. Systems Group, Rockville, and National Oceanic and Atmospheric Administration/Environmental Modeling Center, College Park, Maryland
  • | 3 Laboratory for Mesoscale Atmospheric Processes, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The dynamics and predictability of the intensification of Hurricane Edouard (2014) are explored through a 60-member convection-permitting ensemble initialized with an ensemble Kalman filter that assimilates dropsondes collected during NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. The 126-h forecasts are initialized when Edouard was designated as a tropical depression and include Edouard’s near–rapid intensification (RI) from a tropical storm to a strong category-2 hurricane. Although the deterministic forecast was very successful and many members correctly forecasted Edouard’s intensification, there was significant spread in the timing of intensification among the members of the ensemble.

Utilizing composite groups created according to the near-RI-onset times of the members, it is shown that, for increasing magnitudes of deep-layer shear, RI onset is increasingly delayed; intensification will not occur once a critical shear threshold is exceeded. Although the timing of intensification varies by as much as 48 h, a decrease in shear is observed across the intensifying composite groups ~6–12 h prior to RI. This decrease in shear is accompanied by a reduction in vortex tilt, as the precession and subsequent alignment process begins ~24–48 h prior to RI. Sensitivity experiments reveal that some of the variation in RI timing can be attributed to differences in initial intensity, as the earliest-developing members have the strongest initial vortices regardless of their environment. Significant sensitivity and limited predictability exists for members with weaker initial vortices and/or that are embedded in less conducive environments, under which the randomness of moist convective processes and minute initial differences distant from the surface center can produce divergent forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Professor Fuqing Zhang, fzhang@psu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

The dynamics and predictability of the intensification of Hurricane Edouard (2014) are explored through a 60-member convection-permitting ensemble initialized with an ensemble Kalman filter that assimilates dropsondes collected during NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. The 126-h forecasts are initialized when Edouard was designated as a tropical depression and include Edouard’s near–rapid intensification (RI) from a tropical storm to a strong category-2 hurricane. Although the deterministic forecast was very successful and many members correctly forecasted Edouard’s intensification, there was significant spread in the timing of intensification among the members of the ensemble.

Utilizing composite groups created according to the near-RI-onset times of the members, it is shown that, for increasing magnitudes of deep-layer shear, RI onset is increasingly delayed; intensification will not occur once a critical shear threshold is exceeded. Although the timing of intensification varies by as much as 48 h, a decrease in shear is observed across the intensifying composite groups ~6–12 h prior to RI. This decrease in shear is accompanied by a reduction in vortex tilt, as the precession and subsequent alignment process begins ~24–48 h prior to RI. Sensitivity experiments reveal that some of the variation in RI timing can be attributed to differences in initial intensity, as the earliest-developing members have the strongest initial vortices regardless of their environment. Significant sensitivity and limited predictability exists for members with weaker initial vortices and/or that are embedded in less conducive environments, under which the randomness of moist convective processes and minute initial differences distant from the surface center can produce divergent forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Professor Fuqing Zhang, fzhang@psu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Save