• Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, doi:10.1029/2001JD001010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107, 13821387, doi:10.1175/1520-0493(1979)107<1382:TRBFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, T. S., D. J. Coffman, D. S. Covert, and P. K. Quinn, 2002: Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99. J. Geophys. Res., 107, 8026, doi:10.1029/2001JD001174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beegum, S. N., K. Krishna Moorthy, S. S. Babu, R. R. Reddy, and K. R. Gopal, 2009: Large scale modulations of spectral aerosol optical depths by atmospheric planetary waves. Geophys. Res. Lett., 36, L03810, doi:10.1029/2008GL036509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, doi:10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev., 135, 13271353, doi:10.1175/MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2006: Characteristics of tropical convection over the ocean near Kwajalein. Mon. Wea. Rev., 134, 834853, doi:10.1175/MWR3075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, S. D., and et al. , 2013: Understanding global secondary organic aerosol amount and size-resolved condensational behavior. Atmos. Chem. Phys., 13, 11 51911 534, doi:10.5194/acp-13-11519-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dusek, U., and et al. , 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378, doi:10.1126/science.1125261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. D., G. R. van der Werf, and S. S. P. Shen, 2009: Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci., 2, 185188, doi:10.1038/ngeo443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, doi:10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., B. Tian, R. A. Kahn, O. Kalashnikova, S. Wong, and D. E. Waliser, 2013: Tropical Atlantic dust and smoke aerosol variations related to the Madden–Julian oscillation in MODIS and MISR observations. J. Geophys. Res. Atmos., 118, 49474963, doi:10.1002/jgrd.50409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., D. C. Covert, and R. Vandingenen, 2000: Size distribution and chemical composition of marine aerosols: A compilation and review. Tellus, 52B, 11041122, doi:10.1034/j.1600-0889.2000.00136.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iribarne, J. V., and W. L. Godson, 1981: Atmospheric Thermodynamics. 2nd ed. D. Reidel Publishing Co., 244 pp.

    • Crossref
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., B. Jha, J. Prospero, A. Jayaraman, and V. Ramanathan, 1998: Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise. Tellus, 50B, 521542, doi:10.1034/j.1600-0889.1998.00009.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM PR) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langley DeWitt, H., D. J. Coffman, K. J. Schulz, W. Alan Brewer, T. S. Bates, and P. K. Quinn, 2013: Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Madden–Julian oscillation. J. Geophys. Res. Atmos., 118, 57365749, doi:10.1002/jgrd.50419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., and V. Ramanathan, 2002: Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res., 107, 4284, doi:10.1029/2001JD000949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1986: Seasonal variations of the 40-50 day oscillation in the tropics. J. Atmos. Sci., 43, 31383158, doi:10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., and A. Saha, 2000: Aerosol study during INDOEX: Observation of enhanced aerosol activity over the mid Arabian Sea during the northern winter. J. Atmos. Sol.-Terr. Phys., 62, 6572, doi:10.1016/S1364-6826(99)00081-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., and P. J. Adams, 2009: Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos. Chem. Phys., 9, 13391356, doi:10.5194/acp-9-1339-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., M. J. Evans, C. E. Scott, S. D. D’Andrea, D. K. Farmer, E. Sweitlicki, and D. V. Spracklin, 2013: Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry. Atmos. Chem. Phys., 13, 31633176, doi:10.5194/acp-13-3163-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and et al. , 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, 28 37128 398, doi:10.1029/2001JD900133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and et al. , 2012: Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmos. Chem. Phys., 12, 21172147, doi:10.5194/acp-12-2117-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky, 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297, 16671670, doi:10.1126/science.1073869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and et al. , 2014: Global observations of aerosol–cloud–precipitation climate interactions. Rev. Geophys., 52, 750808, doi:10.1002/2013RG000441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, doi:10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., K. K. Moorthy, and B. V. K. Murthy, 1998: Spatial gradients in aerosol characteristics over the Arabian Sea and Indian Ocean. J. Geophys. Res., 103, 26 18326 192, doi:10.1029/98JD00803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., V. Ramanathan, X. Li-Jones, J. M. Lobert, I. A. Podgorny, J. M. Prospero, B. N. Holben, and N. G. Loeb, 1999: A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res., 104, 27 42127 440, doi:10.1029/1999JD900478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642655, doi:10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., K. S. Carslaw, U. Poschl, A. Rap, and P. M. Forster, 2011: Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys., 11, 90679087, doi:10.5194/acp-11-9067-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. S. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, doi:10.1002/2014JD023033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, doi:10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and T. S. L’Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, doi:10.1002/2013JD020272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and et al. , 2008: Does the Madden–Julian oscillation influence aerosol variability? J. Geophys. Res., 113, D12215, doi:10.1029/2007JD009372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, R. A. Kahn, and S. Wong, 2011: Modulation of Atlantic aerosols by the Madden–Julian oscillation. J. Geophys. Res., 116, D15108, doi:10.1029/2010JD015201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C., E. Zipser, and C. Liu, 2014: An investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci., 71, 430447, doi:10.1175/JAS-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season Real-Time Multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 704 pp.

    • Crossref
    • Export Citation
  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., T. V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2015: Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO shipborne radar and TRMM. J. Atmos. Sci., 72, 623640, doi:10.1175/JAS-D-14-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, C. Schumacher, and M. Katsumata, 2015: Evolution, properties, and spatial variability of MJO convection near and off the equator during DYNAMO. J. Atmos. Sci., 72, 41264147, doi:10.1175/JAS-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., and Y. Hayashi, 1984: A simple diagnostic model for the 30–50 day oscillation in the Tropics. J. Meteor. Soc. Japan, 62, 709717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 6
PDF Downloads 77 77 6

Interactions between the MJO, Aerosols, and Convection over the Central Indian Ocean

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

This study examines covariability of boundary layer cloud condensation nuclei (CCN) concentrations [estimated using the GEOS 3D chemical transport model (GEOS-Chem)], convective clouds, precipitation, and lightning observed over the central equatorial Indian Ocean (CIO). Three distinct Madden–Julian oscillation (MJO) episodes were observed during the recent Dynamics of the MJO (DYNAMO; 2011/12) field campaign. Coherent relationships between CCN, rainfall, and lightning are apparent in time series from DYNAMO and more lightning located north of the equator is noted, compared to south of the equator. More-polluted environments north of the equator contained deep convective clouds that had stronger radar reflectivities (~2–3 dB) in the mixed-phase region (5–10-km altitude) compared to south of the equator. Following discussion of the MJO episodes that occurred during DYNAMO, 22 cycles of the MJO observed during boreal cold seasons in the years 2004–11 are examined with the aid of TRMM satellite observations. Climatological results suggest that horizontal transport of continental aerosols from proximal landmasses by the large-scale circulation after active MJO convection reinforces the meridional gradient of CCN concentrations in the CIO. Satellite observations depicted comparable aggregate cold cloud feature area in both regions in similar thermodynamic environments, leading to the suggestion that higher CCN concentrations north of the equator act to invigorate convection. Direct comparisons of convective intensity metrics to CCN support the aerosol hypothesis; however, in line with previous studies, it is acknowledged that conditional instability, vertical wind shear, and environmental moisture can modulate the initial development of deep convection over the CIO during select phases of the MJO.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0054.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. C. Stolz, dstolz@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

This study examines covariability of boundary layer cloud condensation nuclei (CCN) concentrations [estimated using the GEOS 3D chemical transport model (GEOS-Chem)], convective clouds, precipitation, and lightning observed over the central equatorial Indian Ocean (CIO). Three distinct Madden–Julian oscillation (MJO) episodes were observed during the recent Dynamics of the MJO (DYNAMO; 2011/12) field campaign. Coherent relationships between CCN, rainfall, and lightning are apparent in time series from DYNAMO and more lightning located north of the equator is noted, compared to south of the equator. More-polluted environments north of the equator contained deep convective clouds that had stronger radar reflectivities (~2–3 dB) in the mixed-phase region (5–10-km altitude) compared to south of the equator. Following discussion of the MJO episodes that occurred during DYNAMO, 22 cycles of the MJO observed during boreal cold seasons in the years 2004–11 are examined with the aid of TRMM satellite observations. Climatological results suggest that horizontal transport of continental aerosols from proximal landmasses by the large-scale circulation after active MJO convection reinforces the meridional gradient of CCN concentrations in the CIO. Satellite observations depicted comparable aggregate cold cloud feature area in both regions in similar thermodynamic environments, leading to the suggestion that higher CCN concentrations north of the equator act to invigorate convection. Direct comparisons of convective intensity metrics to CCN support the aerosol hypothesis; however, in line with previous studies, it is acknowledged that conditional instability, vertical wind shear, and environmental moisture can modulate the initial development of deep convection over the CIO during select phases of the MJO.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0054.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. C. Stolz, dstolz@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Supplementary Materials

    • Supplemental Materials (ZIP 14.57 MB)
Save