• Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, doi:10.1111/j.2153-3490.1966.tb00303.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, doi:10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., M. L. Blackmon, G. T. Bates, and S. Muñoz, 1985: Sensitivity of January climate response to the magnitude and position of equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 42, 10371049, doi:10.1175/1520-0469(1985)042<1037:SOJCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., and S. B. Feldstein, 2015: The impact of the initial flow on the extratropical response to Madden–Julian oscillation convective heating. Mon. Wea. Rev., 143, 11041121, doi:10.1175/MWR-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, doi:10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 3737–3765, doi:10.1007/s00382-016-3039-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 11641181, doi:10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and J. Derome, 2004: Nonlinearity of the extratropical response to tropical forcing. J. Climate, 17, 25972608, doi:10.1175/1520-0442(2004)017<2597:NOTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, doi:10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., and W. A. Robinson, 1993: On the Rossby wave source and the steady linear response to tropical forcing. J. Atmos. Sci., 50, 18191823, doi:10.1175/1520-0469(1993)050<1819:OTRWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., 1972: The influence of tropical east Pacific Ocean temperatures on the atmosphere. Quart. J. Roy. Meteor. Soc., 98, 290321, doi:10.1002/qj.49709841605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 40, 16131630, doi:10.1175/1520-0469(1983)040<1613:NSOTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, doi:10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 23792393, doi:10.1175/JAS-D-11-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 7
PDF Downloads 23 23 4

Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Michael Goss, mag475@psu.edu

Abstract

Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Michael Goss, mag475@psu.edu
Save