• Bacmeister, J. T., and M. Schoberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 21092134, doi:10.1175/1520-0469(1989)046<2109:BOVPTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., P. A. Newman, B. L. Gary, and K. R. Chan, 1994: An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Wea. Forecasting, 9, 241253, doi:10.1175/1520-0434(1994)009<0241:AAFFMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brinkmann, W. A. R., 1971: What is a foehn? Weather, 26, 230240, doi:10.1002/j.1477-8696.1971.tb04200.x.

  • Chen, C.-C., D. R. Durran, and G. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 32133231, doi:10.1175/JAS3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., G. J. Hakim, and D. R. Durran, 2007: Transient mountain waves and their interaction with large scales. J. Atmos. Sci., 64, 23782400, doi:10.1175/JAS3972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J., Q. Jiang, R. Smith, and V. Grubis̆ić, 2011: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, doi:10.1175/2010MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G., 2000: Role of nonmodal growth and nonlinearity in cyclogenesis initial-value problems. J. Atmos. Sci., 57, 29512967, doi:10.1175/1520-0469(2000)057<2951:RONGAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hills, M. G., and D. R. Durran, 2012: Nonstationary trapped lee waves generated by the passage of an isolated jet. J. Atmos. Sci., 69, 30403059, doi:10.1175/JAS-D-12-047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distributions. J. Atmos. Sci., 66, 508518, doi:10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.-Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J., J. Dudhia, and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and J. B. Klemp, 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech., 95, 241261, doi:10.1017/S0022112079001452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and H. Teitelbaum, 1993a: Linear unsteady mountain waves. Tellus, 45A, 201220, doi:10.1034/j.1600-0870.1993.t01-2-00004.x.

  • Lott, F., and H. Teitelbaum, 1993b: Topographic waves generated by a transient wind. J. Atmos. Sci., 50, 26072624, doi:10.1175/1520-0469(1993)050<2607:TWGBAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660, doi:10.1175/1520-0493(1997)125<0655:TDCWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. Martin Ralph, R. L. Weber, T. Uttal, L. B. Nance, and D. H. Levinson, 2001: Observations of nonclassical frontal propagation and frontally forced gravity waves adjacent to steep topography. Mon. Wea. Rev., 129, 26332659, doi:10.1175/1520-0493(2001)129<2633:OONFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54, 193210, doi:10.1175/1520-0469(1997)054<0193:TEORAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P., and D. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., W. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, doi:10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R., B. Woods, J. Jensen, W. Cooper, J. Doyle, Q. Jiang, and V. Grubis̆ić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, doi:10.1175/2007JAS2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three dimensional obstacles. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, H., S. Webster, and A. Brown, 2005: The effect of rotation on the pressure drag force produced by flow around long mountain ridges. Quart. J. Roy. Meteor. Soc., 131, 13211338, doi:10.1256/qj.04.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., and R. H. Johnson, 1984: Meso- and microscale features of a Colorado cold front. J. Climate Appl. Meteor., 23, 13151325, doi:10.1175/1520-0450(1984)023<1315:MAMFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004: Upstream effects of an Alpine-scale mountain range under various flow angles. Meteor. Z., 13, 291296, doi:10.1127/0941-2948/2004/0013-0291.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 151 14
PDF Downloads 134 134 15

Mountain Waves, Downslope Winds, and Low-Level Blocking Forced by a Midlatitude Cyclone Encountering an Isolated Ridge

View More View Less
  • 1 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The interaction of a midlatitude cyclone with an isolated north–south mountain barrier is examined using numerical simulation. A prototypical cyclone develops from an isolated disturbance in a baroclinically unstable shear flow upstream of the ridge, producing a cold front that interacts strongly with the topography. The structure and evolution of the lee waves launched by the topography are analyzed, including their temporal and their north–south variation along the ridge. Typical mountain wave patterns are generated by a 500-m-high mountain, but these waves often exhibit significant differences from the waves produced in 2D or 3D simulations with steady large-scale-flow structures corresponding to the instantaneous conditions over the mountain in the evolving flow. When the mountain height is 2 km, substantial wave breaking occurs, both at low levels in the lee and in the lower stratosphere. Despite the north–south uniformity of the terrain profile, large north–south variations are apparent in wave structure and downslope winds. In particular, for a 24-h period beginning after the cold front passes the upstream side of the ridge toward the south, strong downslope winds occur only in the northern half of the lee of the ridge. Just prior to this period, the movement of the cold front across the northern lee slopes is complex and accompanied by a burst of strong downslope winds and intense vertical velocities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Maximo Q. Menchaca, menchaca@atmos.washington.edu

Abstract

The interaction of a midlatitude cyclone with an isolated north–south mountain barrier is examined using numerical simulation. A prototypical cyclone develops from an isolated disturbance in a baroclinically unstable shear flow upstream of the ridge, producing a cold front that interacts strongly with the topography. The structure and evolution of the lee waves launched by the topography are analyzed, including their temporal and their north–south variation along the ridge. Typical mountain wave patterns are generated by a 500-m-high mountain, but these waves often exhibit significant differences from the waves produced in 2D or 3D simulations with steady large-scale-flow structures corresponding to the instantaneous conditions over the mountain in the evolving flow. When the mountain height is 2 km, substantial wave breaking occurs, both at low levels in the lee and in the lower stratosphere. Despite the north–south uniformity of the terrain profile, large north–south variations are apparent in wave structure and downslope winds. In particular, for a 24-h period beginning after the cold front passes the upstream side of the ridge toward the south, strong downslope winds occur only in the northern half of the lee of the ridge. Just prior to this period, the movement of the cold front across the northern lee slopes is complex and accompanied by a burst of strong downslope winds and intense vertical velocities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Maximo Q. Menchaca, menchaca@atmos.washington.edu
Save