• Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, doi:10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, doi:10.1002/qj.49712354007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

  • Blackmon, M., J. Wallace, N. Lau, and S. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, doi:10.1002/qj.49712353910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, doi:10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, doi:10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. M. Van den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, doi:10.1111/j.1600-0870.2006.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm-track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, doi:10.1175/JAS-D-14-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, doi:10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, doi:10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D., I. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilet, J., M. Plu, and G. Rivière, 2009: Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet. J. Atmos. Sci., 66, 30213041, doi:10.1175/2009JAS3086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. LaCasce, 2014: Changes in cyclone characteristics in response to modified SSTs. J. Climate, 27, 42734295, doi:10.1175/JCLI-D-13-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, doi:10.1002/qj.49709942003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, doi:10.1029/2012GL052873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large–Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, doi:10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. Hodges, 2005: A new perspective on the Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

  • Hoskins, B. J., I. James, and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, doi:10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2011a: Downstream self-destruction of storm tracks. J. Atmos. Sci., 68, 24592464, doi:10.1175/JAS-D-10-05002.1.

  • Kaspi, Y., and T. Schneider, 2011b: Winter cold of eastern continental boundaries induced by warm ocean waters. Nature, 471, 621624, doi:10.1038/nature09924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, W., 1957: Principal Tracks and Mean Frequencies of Cyclones and Anticyclones in the Northern Hemisphere. U.S. Weather Bureau, 60 pp.

  • Lee, W., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53, 17371750, doi:10.1175/1520-0469(1996)053<1737:TROOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, N. J., 1967: The dependence of the motion of cyclonic and anticyclonic vortices on their size. J. Atmos. Sci., 24, 449452, doi:10.1175/1520-0469(1967)024<0449:TDOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. Wiley, 336 pp.

  • Mendes, D., and M. D. Mendes, 2004: Climatology of cyclones, anticyclones and storm tracks: Revision of concepts. Rev. Bras. Geofís., 22, 127134, doi:10.1590/S0102-261X2004000200003.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725, doi:10.1175/JAS3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., M. T. Montgomery, and H. C. Davies, 2008: The integral role of a diabatic Rossby vortex in a heavy snowfall event. Mon. Wea. Rev., 136, 18781897, doi:10.1175/2007MWR2257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., M. T. Montgomery, and H. Davies, 2013: Genesis criteria for diabatic Rossby vortices: A model study. Mon. Wea. Rev., 141, 252263, doi:10.1175/MWR-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Novak, L., M. H. P. Ambaum, and R. Tailleux, 2015: The life cycle of the North Atlantic storm track. J. Atmos. Sci., 72, 821833, doi:10.1175/JAS-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 25772602, doi:10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oruba, L., G. Lapeyre, and G. Rivière, 2013: On the poleward motion of midlatitude cyclones in a baroclinic meandering jet. J. Atmos. Sci., 70, 26292649, doi:10.1175/JAS-D-12-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, doi:10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Petterssen, S., 1956: Weather Analysis and Forecasting: Motion and Motion Systems. Vol. I. McGraw-Hill, 428 pp.

  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, G. Lapeyre, and K. Maynard, 2012: A potential vorticity perspective on the motion of a mid-latitude winter storm. Geophys. Res. Lett., 39, L12808, doi:10.1029/2012GL052440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M., 1997: Objective identification of cyclones and their circulation intensity and climatology. Wea. Forecasting, 12, 595612, doi:10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, doi:10.1175/JAS-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, L., L. Lee, and S. Son, 2007: Southern Hemisphere spiral jet. J. Atmos. Sci., 64, 548563, doi:10.1175/JAS3939.1.

  • Wills, R. C., and T. Schneider, 2015: Stationary eddies and the zonal asymmetry of net precipitation and ocean freshwater forcing. J. Climate, 28, 51155133, doi:10.1175/JCLI-D-14-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., B. Sinha, and R. G. Williams, 2010: The shaping of storm tracks by mountains and ocean dynamics. Weather, 65, 320323, doi:10.1002/wea.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, doi:10.1175/JCLI-D-12-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 15
PDF Downloads 51 51 12

Mechanisms Controlling the Downstream Poleward Deflection of Midlatitude Storm Tracks

View More View Less
  • 1 Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
© Get Permissions
Restricted access

Abstract

The Atlantic and Pacific storm tracks in the Northern Hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind, and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclones in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time- and zonal-mean background flow, a stationary wave, and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release, and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. In the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low-level PV anomaly associated with the cyclone. Upstream of that region, the stationary wave is opposing the former two, and the poleward tendency is therefore reduced. Finally, through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Talia Tamarin, talia.tamarin@weizmann.ac.il

Abstract

The Atlantic and Pacific storm tracks in the Northern Hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind, and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclones in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time- and zonal-mean background flow, a stationary wave, and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release, and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. In the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low-level PV anomaly associated with the cyclone. Upstream of that region, the stationary wave is opposing the former two, and the poleward tendency is therefore reduced. Finally, through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Talia Tamarin, talia.tamarin@weizmann.ac.il
Save