• Aiyyer, A. R., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704, doi:10.1175/2007JAS2348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., 2014: African easterly wave energetics on intraseasonal timescales. Ph.D. dissertation, Colorado State University, 214 pages.

  • Avila, L. A., and R. J. Pasch, 1992: Atlantic tropical systems of 1991. Mon. Wea. Rev., 120, 26882696, doi:10.1175/1520-0493(1992)120<2688:ATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and R. J. Pasch, 1995: Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887896, doi:10.1175/1520-0493(1995)123<0887:ATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., L. A. Avila, J. L. Franklin, M. B. Lawrence, R. J. Pasch, and S. R. Stewart, 2005: Eastern North Pacific hurricane season of 2006. Mon. Wea. Rev., 133, 14031414, doi:10.1175/MWR2917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and R. J. Pasch, 2010: Eastern North Pacific hurricane season of 2008. Mon. Wea. Rev., 138, 705721, doi:10.1175/2009MWR3093.1.

  • Blake, E. S., and T. B. Kimberlain, 2013: Eastern North Pacific hurricane season of 2011. Mon. Wea. Rev., 141, 13971412, doi:10.1175/MWR-D-12-00192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000a: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018, doi:10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000b: Satellite observations of the wind jets off the Pacific coast of Central America. Part II: Regional relationships and dynamical considerations. Mon. Wea. Rev., 128, 20192043, doi:10.1175/1520-0493(2000)128<2019:SOOTWJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Crosbie, E., and Y. Serra, 2014: Intraseasonal modulation of synoptic-scale disturbances and tropical cyclone genesis in the eastern North Pacific. J. Climate, 27, 57245745, doi:10.1175/JCLI-D-13-00399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2015: The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci., 72, 34993516, doi:10.1175/JAS-D-15-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, G. E., 1933: Tropical storms of 1933. Mon. Wea. Rev., 61, 362363, doi:10.1175/1520-0493(1933)61<362:TSO>2.0.CO;2.

  • Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285, doi:10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, doi:10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 25592570, doi:10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., J. Wallace, and J. Young, 1971: On boundary layer dynamics and the ITCZ. J. Atmos. Sci., 28, 275280, doi:10.1175/1520-0469(1971)028<0275:OBLDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C. S., C. H. Ho, J. H. Kim, D. K. Lee, D. H. Cha, and S. W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 25342545, doi:10.1175/JCLI-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R., and P. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., C. S. Jin, C. H. Ho, J. Kim, and J. H. Kim, 2015: Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Climate Dyn., 44, 32233235, doi:10.1007/s00382-014-2410-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and et al. , 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2014: Climate algorithm theoretical basis document (C-ATBD): Outgoing longwave radiation (OLR)—Daily. NOAA’s Climate Data Record (CDR) Program. NOAA Tech Rep. CDRP-ATBD-0526, 46 pp. [Available online at http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf.]

  • Lim, K., and S. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., G. M. Lackmann, A. Aiyyer, and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, doi:10.1175/JCLI-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003a: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, doi:10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003b: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, doi:10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128, 32963307, doi:10.1175/1520-0493(2000)128<3296:PASSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996: Lee vorticity production by large-scale tropical mountain ranges. Part I: Eastern North Pacific tropical cyclogenesis. J. Atmos. Sci., 53, 521538, doi:10.1175/1520-0469(1996)053<0521:LVPBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Y. Takayabu, 1985: Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year part II: Regional characteristics of the disturbances. Pure Appl. Geophys., 123, 272292, doi:10.1007/BF00877023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: Outgoing longwave radiation—Daily. National Climatic Data Center, accessed 23 June 2014. [Available online at http://www.ncdc.noaa.gov/cdr/operationalcdrs.html.]

  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Raymond, D. J., C. Lopez-Carrillo, and L. Lopez Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034, doi:10.1002/qj.49712455011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Gjorgjievska, S. L. Sessions, and Z. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Oceanogr. J., 64, 1125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2014: Energetics of east Pacific easterly waves during intraseasonal events. J. Climate, 27, 76037621, doi:10.1175/JCLI-D-14-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2015: On the convective coupling and moisture organization of east Pacific easterly waves. J. Climate, 72, 38503870, doi:10.1175/JAS-D-15-0056.1.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, S. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of east Pacific intraseasonal variability during boreal summer. J. Climate, 26, 35753596, doi:10.1175/JCLI-D-12-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. G. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, doi:10.1175/2007JAS2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840, doi:10.1175/2010JCLI3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1986: The three-dimensional structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Wea. Rev., 114, 18761891, doi:10.1175/1520-0493(1986)114<1876:TTDSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., N. Frank, D. Shideler, and H. M. Johnson, 1969: Atlantic tropical disturbances of 1968. Mon. Wea. Rev., 97, 240255, doi:10.1175/1520-0493(1969)097<0240:ATDO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split non-hydrostratic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, E. D. Maloney, S. P. deSzoeke, and T. Miyama, 2011: Intraseasonal variability in the far-east Pacific: Investigation of the role of air–sea coupling in a regional coupled model. Climate Dyn., 36, 867890, doi:10.1007/s00382-010-0786-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, K. S., and Y. Ogura, 1987: An observational study of easterly waves over the eastern Pacific in the northern summer using FGGE data. J. Atmos. Sci., 44, 339361, doi:10.1175/1520-0469(1987)044<0339:AOSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, doi:10.1175/2008JAS2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V., and P. J. Webster, 2010a: Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part I: Theory and diagnostics. Climate Dyn., 34, 587604, doi:10.1007/s00382-009-0584-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V., and P. J. Webster, 2010b: Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part II: Numerical experiments. Climate Dyn., 34, 605613, doi:10.1007/s00382-009-0585-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., G. N. Kiladis, and A. Suzuki-Parker, 2011: Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics. Climate Dyn., 36, 185203, doi:10.1007/s00382-009-0697-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, doi:10.1029/JD092iD08p09591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., B. E. Mapes, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulation and comparison with observations. Mon. Wea. Rev., 131, 813829, doi:10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2015: Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298316, doi:10.1175/MWR-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 16
PDF Downloads 59 59 16

In Situ Initiation of East Pacific Easterly Waves in a Regional Model

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

The in situ generation of easterly waves (EWs) in the east Pacific (EPAC) is investigated using the Weather Research and Forecasting (WRF) Model. The sensitivity of the model to the suppression of EW forcing by locally generated convective disturbances is examined. Specifically, local forcing of EWs is removed by reducing the terrain height in portions of Central and South America to suppress robust sources of diurnal convective variability, most notably in the Panama Bight. High terrain contributes to the initiation of mesoscale convective systems in the early morning that propagate westward into the EPAC warm pool. When such mesoscale convective systems are suppressed in the model, EW variance is significantly reduced. This result suggests that EPAC EWs can be generated locally in association with higher-frequency convective disturbances, and these disturbances are determined to be an important source of EPAC EW variability. However, EPAC EW variability is not completely eliminated in such sensitivity experiments, indicating the importance for other sources of EW forcing, namely, EWs propagating into the EPAC from West Africa. Examination of the EW vorticity budget in the model suggests that nascent waves are zonally elongated and amplified by horizontal advection and vertical stretching of vorticity. Changes in the mean state between the control run and simulation with reduced terrain height also complicate interpretation of the results.

Current affiliation: Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adam V. Rydbeck, adam.rydbeck@gmail.com

Abstract

The in situ generation of easterly waves (EWs) in the east Pacific (EPAC) is investigated using the Weather Research and Forecasting (WRF) Model. The sensitivity of the model to the suppression of EW forcing by locally generated convective disturbances is examined. Specifically, local forcing of EWs is removed by reducing the terrain height in portions of Central and South America to suppress robust sources of diurnal convective variability, most notably in the Panama Bight. High terrain contributes to the initiation of mesoscale convective systems in the early morning that propagate westward into the EPAC warm pool. When such mesoscale convective systems are suppressed in the model, EW variance is significantly reduced. This result suggests that EPAC EWs can be generated locally in association with higher-frequency convective disturbances, and these disturbances are determined to be an important source of EPAC EW variability. However, EPAC EW variability is not completely eliminated in such sensitivity experiments, indicating the importance for other sources of EW forcing, namely, EWs propagating into the EPAC from West Africa. Examination of the EW vorticity budget in the model suggests that nascent waves are zonally elongated and amplified by horizontal advection and vertical stretching of vorticity. Changes in the mean state between the control run and simulation with reduced terrain height also complicate interpretation of the results.

Current affiliation: Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adam V. Rydbeck, adam.rydbeck@gmail.com
Save