• Anderson, J. R., K. K. Droegemeier, and R. B. Wilhelmson, 1985: Simulation of the thunderstorm subcloud environment. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 147–150.

  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, doi:10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1997: A multi-thermal model of cumulus glaciation via the Hallett–Mossop process. Quart. J. Roy. Meteor. Soc., 123, 11851198, doi:10.1002/qj.49712354104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964, doi:10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, doi:10.1256/qj.03.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432, doi:10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and R. P. Lawson, 1984: Physical interpretation of results from the HIPLEX-1 experiment. J. Climate Appl. Meteor., 23, 523540, doi:10.1175/1520-0450(1984)023<0523:PIORFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, doi:10.1175/JAS-D-12-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, doi:10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011a: Interpolation of LES cloud surfaces for use in direct calculations of entrainment and detrainment. Mon. Wea. Rev., 139, 444456, doi:10.1175/2010MWR3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011b: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, doi:10.1175/2011JAS3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2012: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys., 12, 11011119, doi:10.5194/acp-12-1101-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos. Chem. Phys., 13, 77957811, doi:10.5194/acp-13-7795-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., B. E. Martner, and L. J. Miller, 1983: Dynamical–microphysical evolution of a convective storm in a weakly-sheared environment. Part I: Microphysical observations and interpretation. J. Atmos. Sci., 40, 20832096, doi:10.1175/1520-0469(1983)040<2083:DMEOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., G. Vali, and R. D. Kelly, 1999: Evolution of small cumulus clouds in Florida: Observations of pulsating growth. Atmos. Res., 52, 143165, doi:10.1016/S0169-8095(99)00024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, E. L., 1958: Observations on the appearance and growth of tropical cumuli. J. Meteor., 15, 127130, doi:10.1175/1520-0469(1958)015<0127:OOTAAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and A. Seifert, 2013: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci. Model Dev., 6, 12611273, doi:10.5194/gmd-6-1261-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, doi:10.1175/2008JAS2572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., H. J. J. Jonker, H. E. A. Van den Akker, E. J. Griffith, M. Koutek, and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res., 114, D06208, doi:10.1029/2008JD010917.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Reply to “Comments by Alan M. Blyth and John Latham on ‘Cumulus glaciation papers by P. V. Hobbs and A. L. Rangno.’” Quart. J. Roy. Meteor. Soc., 124, 10091011, doi:10.1002/qj.49712454717.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, doi:10.1175/2010JAS3642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and T. L. Clark, 1985: Dynamics of the cloud-environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642, doi:10.1175/1520-0469(1985)042<2621:DOTCEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leon, D., and et al. , 2016: The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern United Kingdom. Bull. Amer. Meteor. Soc., 97, 10031020, doi:10.1175/BAMS-D-14-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor., 16, 8190, doi:10.1175/1520-0450(1977)016<0081:TCOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and R. S. Scorer, 1955: The erosion of cumulus towers. J. Meteor., 12, 4357, doi:10.1175/1520-0469(1955)012<0000:TEOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., and P. R. Jonas, 1974: The evolution of droplet spectra and large droplets by condensation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 100, 2338, doi:10.1002/qj.49710042304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. E. Dye, and B. E. Martner, 1983: Dynamical–microphysical evolution of a convective storm in a weakly-sheared environment. Part II: Airflow and precipitation trajectories from Doppler radar observations. J. Atmos. Sci., 40, 20972109, doi:10.1175/1520-0469(1983)040<2097:DMEOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitzeva, R. P., N. Samardjiev, and C. P. R. Saunders, 2003: Charge density in the updraughts of thunderstorms: A numerical study in the frame of a Lagrangian model. Atmos. Res., 69, 5171, doi:10.1016/j.atmosres.2003.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, doi:10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. B., P. Gentine, K. Schneider, and M. Farge, 2016: Coherent structures in the boundary and cloud layers: Role of updrafts, subsiding shells, and environmental subsidence. J. Atmos. Sci., 73, 17891814, doi:10.1175/JAS-D-15-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. H. Wilkening, 1982: Flow and mixing in New Mexico mountain cumuli. J. Atmos. Sci., 39, 22112228, doi:10.1175/1520-0469(1982)039<2211:FAMINM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1989: Precipitation development in a New Mexico thunderstorm. Quart. J. Roy. Meteor. Soc., 115, 13971423, doi:10.1002/qj.49711549011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesner, S., A. I. Flossmann, and H. R. Pruppacher, 1990: The effect on the evolution of the drop spectrum in clouds of the preconditioning of air by successive convective elements. Quart. J. Roy. Meteor. Soc., 116, 13891403, doi:10.1002/qj.49711649607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, doi:10.1175/2010JAS3371.1.

  • Romps, D. M., 2016: The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection. J. Adv. Model. Earth Syst., 8, 319344, doi:10.1002/2015MS000537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, doi:10.1175/2009JAS3307.1.

  • Saunders, P. M., 1961: An observational study of cumulus. J. Meteor., 18, 451467, doi:10.1175/1520-0469(1961)018<0451:AOSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., and C.-H. Moeng, 1991: Plume budgets in clear and cloudy convective boundary layers. J. Atmos. Sci., 48, 1758, doi:10.1175/1520-0469(1991)048<1758:PBICAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech., 2, 583594, doi:10.1017/S0022112057000397.

  • Scorer, R., and F. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94103, doi:10.1002/qj.49707933908.

  • Sherwood, S. C., D. Hernández-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1996: On the mass flux approach for atmospheric convection. Proc. Workshop on New Insights and Approaches to Convective Parametrization, Shinfield Park, Reading, United Kingdom, ECMWF, 25–57. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/1996/12223-mass-flux-approach-atmospheric-convection.pdf.]

  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate, et al., Eds., Nato Science Series, Vol. 513, Springer Netherlands, 441–486.

    • Crossref
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, doi:10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449455, doi:10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci., 49, 13341347, doi:10.1175/1520-0469(1992)049<1334:OOCTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and J. R. Anderson, 1993: Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci., 50, 13291348, doi:10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sušelj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, doi:10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48, 112121, doi:10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, 377 pp.

  • Warner, J., 1969: The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059, doi:10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 10351040, doi:10.1175/1520-0469(1970)027<1035:OSSODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., and B. J. Mason, 1975: Discussion of Mason and Jonas’ model of droplet growth in cumulus clouds. Quart. J. Roy. Meteor. Soc., 101, 176181, doi:10.1002/qj.49710142717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144151, doi:10.1002/qj.49708536407.

  • Yeo, K., and D. M. Romps, 2013: Measurement of convective entrainment using Lagrangian particles. J. Atmos. Sci., 70, 266277, doi:10.1175/JAS-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, doi:10.1175/JAS3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 15
PDF Downloads 44 44 4

The Influence of Successive Thermals on Entrainment and Dilution in a Simulated Cumulus Congestus

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

Cumulus clouds are frequently observed as comprising multiple successive thermals, yet numerical simulations of entrainment have not investigated this level of detail. Here, an idealized simulated cumulus congestus consisting of three successive thermals is used to analyze and understand their role in maintaining the high liquid water content in the core of the cloud, which past 1D modeling studies have suggested can ultimately determine its ability to precipitate. Entrainment and detrainment are calculated directly at the edge of the cloud core at frequent time intervals. Entrainment maxima occur at the rear of the toroidal circulation associated with each thermal and thus are transient features in the lifetime of multithermal clouds. The evolution of the least diluted parcels within each thermal shows that the entrainment rates alone cannot predict the erosion of the high liquid water content cores. A novel analysis of samples of entrained and detrained air within each successive thermal illustrates tendencies for even positively buoyant air, containing condensate, to be entrained by later thermals that rise in the wakes of their predecessors, limiting their dilution. The later thermals can achieve greater depths and produce precipitation when a single thermal could not. Future work is yet needed to evaluate the generality of these results using multiple clouds simulated in different environments with less-idealized modeling frameworks. Implications for current cumulus parameterizations are briefly discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel H. Moser, dmoser2@illinois.edu

Abstract

Cumulus clouds are frequently observed as comprising multiple successive thermals, yet numerical simulations of entrainment have not investigated this level of detail. Here, an idealized simulated cumulus congestus consisting of three successive thermals is used to analyze and understand their role in maintaining the high liquid water content in the core of the cloud, which past 1D modeling studies have suggested can ultimately determine its ability to precipitate. Entrainment and detrainment are calculated directly at the edge of the cloud core at frequent time intervals. Entrainment maxima occur at the rear of the toroidal circulation associated with each thermal and thus are transient features in the lifetime of multithermal clouds. The evolution of the least diluted parcels within each thermal shows that the entrainment rates alone cannot predict the erosion of the high liquid water content cores. A novel analysis of samples of entrained and detrained air within each successive thermal illustrates tendencies for even positively buoyant air, containing condensate, to be entrained by later thermals that rise in the wakes of their predecessors, limiting their dilution. The later thermals can achieve greater depths and produce precipitation when a single thermal could not. Future work is yet needed to evaluate the generality of these results using multiple clouds simulated in different environments with less-idealized modeling frameworks. Implications for current cumulus parameterizations are briefly discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel H. Moser, dmoser2@illinois.edu
Save