• Ávila, E. E., R. A. Lighezzolo, N. E. Castellano, R. G. Pereyra, and R. E. Bürgesser, 2013: Laboratory measurements of charge separation in low liquid water content conditions and low impact velocity. J. Geophys. Res. Atmos., 118, 66806687, doi:10.1002/jgrd.50555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdeklis, P., and R. List, 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58, 27512770, doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87, 12071215, doi:10.1029/JC087iC02p01207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and et al. , 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91, 12311247, doi:10.1029/JD091iD01p01231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaskell, W., and A. J. Illingworth, 1980: Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 106, 841854, doi:10.1002/qj.49710645013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, doi:10.1002/qj.49710946111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitagawa, N., and K. Michimoto, 1994: Meteorological and electrical aspects of winter thunderclouds. J. Geophys. Res., 99, 10 71310 721, doi:10.1029/94JD00288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., T. Endoh, and T. Shigeno, 1983: The electrical structure of snow clouds. Part I: Relationship to their precipitation-physical properties. J. Meteor. Soc. Japan, 61, 325338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. D. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 71417157, doi:10.1029/JC087iC09p07141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meteorological Research Institute, 2005: Study of precipitation mechanisms in snow clouds over the Sea of Japan and feasibility of their modification by seeding. Meteorological Research Institute Tech. Rep. 48, 221 pp.

  • Michimoto, K., 1991: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku district. Part I: Observation and analysis of thunderclouds in summer and winter. J. Meteor. Soc. Japan, 69, 327336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., and T. Matsuo, 1990: Development of the hydrometeor videosonde (HYVIS). J. Atmos. Oceanic Technol., 7, 613620, doi:10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. Matsuo, H. Mizuno, and Y. Yamada, 1994: Mesoscale and microscale structures of snow clouds over the Sea of Japan, Part I: Evolution of microphysical structures in short-lived convective snow clouds. J. Meteor. Soc. Japan, 72, 671694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orikasa, N., and M. Murakami, 1997: A new version of hydrometeor videosonde for cirrus cloud observations. J. Meteor. Soc. Japan, 75, 10331039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., E. E. Ávila, N. E. Castellano, and C. P. R. Saunders, 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20 80320 812, doi:10.1029/2000JD900244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranz, W. E., and J. B. Wong, 1952: Impaction of dust and smoke particles on surface and body collectors. Ind. Eng. Chem., 44, 13711381, doi:10.1021/ie50510a050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, doi:10.1029/97JD02644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017, doi:10.1029/91JD00970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673, doi:10.1256/qj.05.218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, G., and F. J. Scrase, 1937: The distribution of electricity in thunderclouds. Proc. Roy. Soc. London, A161, 309352, doi:10.1098/rspa.1937.0148.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and et al. , 2012: Development of a new videosonde observation system for in-situ precipitation particle measurements. SOLA, 8, 14, doi:10.2151/sola.2012-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1984: Thunderstorm electrification—A numerical study. J. Atmos. Sci., 41, 25412558, doi:10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17, 23812384, doi:10.1029/GL017i013p02381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 2012: Precipitation particle charge distribution and evolution of East Asian rainbands. Atmos. Res., 118, 304323, doi:10.1016/j.atmosres.2012.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025, doi:10.1175/1520-0469(2002)059<1018:ROREIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and T. D. Keenan, 2004: Hydrometer mass, number, and space charge distribution in a “Hector” squall line. J. Geophys. Res., 109, D16208, doi:10.1029/2004JD004667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Tajiri, and Y. Sonoi, 1999: Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci., 56, 15611578, doi:10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whipple, F. J. W., and J. A. Chalmers, 1944: On Wilson’s theory of the collection of charge by falling drops. Quart. J. Roy. Meteor. Soc., 70, 103119, doi:10.1002/qj.49707030402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, doi:10.1029/JD094iD11p13151.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 10
PDF Downloads 43 43 4

Riming Electrification in Hokuriku Winter Clouds and Comparison with Laboratory Observations

View More View Less
  • 1 Honolulu, Hawaii
  • | 2 Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan
  • | 3 Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
  • | 4 Department of Biological and Environmental Sciences, Yamaguchi University, Yamaguchi, Japan
© Get Permissions
Restricted access

Abstract

Riming electrification is the main charge separation mechanism of thunderstorms, occurring mainly during graupel particle–ice crystal collisions. Laboratory experiments have found that charge separation polarity and magnitude depend critically on cloud water content and temperature. Several groups have mapped this dependence, but there are substantial differences between their results. These conflicting laboratory-derived riming electrification topographies can be tested by comparing them to field observations. Here, direct and simultaneous sonde-based measurement of both precipitation particle type and charge (videosonde) and cloud water content [hydrometeor videosonde (HYVIS)] in lightning-active Hokuriku winter clouds at Kashiwazaki, Niigata Prefecture, Japan, are reported. With decreasing height, summed graupel charge transitioned from negative to positive at a mean temperature of −11°C, and the mean peak cloud water content in the positive graupel domain was 0.4 g m−3. Thus, in cloud regions of relatively high temperature (≥−11°C) and low cloud water content (CWC; ≤0.4 g m−3), graupel particles were mainly positively charged. This result can be compared with those of laboratory riming experiments; for example, in this temperature/cloud water content domain, graupel electrification has been reported to be positive by Takahashi, largely negative in early reports using the Manchester cloud chamber, positive in later reports using the Cordoba and Manchester modified cloud chambers, and partially positive in a more recent report using the Cordoba cloud chamber.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tsutomu Takahashi, tsutomutakahashi88@gmail.com

Abstract

Riming electrification is the main charge separation mechanism of thunderstorms, occurring mainly during graupel particle–ice crystal collisions. Laboratory experiments have found that charge separation polarity and magnitude depend critically on cloud water content and temperature. Several groups have mapped this dependence, but there are substantial differences between their results. These conflicting laboratory-derived riming electrification topographies can be tested by comparing them to field observations. Here, direct and simultaneous sonde-based measurement of both precipitation particle type and charge (videosonde) and cloud water content [hydrometeor videosonde (HYVIS)] in lightning-active Hokuriku winter clouds at Kashiwazaki, Niigata Prefecture, Japan, are reported. With decreasing height, summed graupel charge transitioned from negative to positive at a mean temperature of −11°C, and the mean peak cloud water content in the positive graupel domain was 0.4 g m−3. Thus, in cloud regions of relatively high temperature (≥−11°C) and low cloud water content (CWC; ≤0.4 g m−3), graupel particles were mainly positively charged. This result can be compared with those of laboratory riming experiments; for example, in this temperature/cloud water content domain, graupel electrification has been reported to be positive by Takahashi, largely negative in early reports using the Manchester cloud chamber, positive in later reports using the Cordoba and Manchester modified cloud chambers, and partially positive in a more recent report using the Cordoba cloud chamber.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tsutomu Takahashi, tsutomutakahashi88@gmail.com
Save