• Baldwin, M. P., D. B. Stephenson, D. Thompson, T. Dunkerton, A. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, doi:10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, and I. T. Jolliffe, 2009: Spatial weighting and iterative projection methods for EOFs. J. Climate, 22, 234243, doi:10.1175/2008JCLI2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E., and D. Hartmann, 2010: Dynamical feedbacks of the southern annular mode in winter and summer. J. Atmos. Sci., 67, 23202330, doi:10.1175/2010JAS3385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, N., T. Shepherd, T. Woolings, and A. Plumb, 2016: Annular modes and apparent eddy feedbacks in the Southern Hemisphere. Geophys. Res. Lett., 43, 38973902, doi:10.1002/2016GL068851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. A. Plumb, 2009: Quantifying the eddy feedback and the persistence of the zonal index in an idealized atmospheric model. J. Atmos. Sci., 66, 37073720, doi:10.1175/2009JAS3165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and S. F. S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 30773086, doi:10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29A, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., L. M. Polvani, and D. Ancukiewicz, 2008a: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, doi:10.1029/2008GL035712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. M. Polvani, 2008b: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, doi:10.1175/2007MWR2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Goodman, J., and J. Marshall, 2002: Using neutral singular vectors to study low-frequency atmospheric variability. J. Atmos. Sci., 59, 32063222, doi:10.1175/1520-0469(2002)059<3206:UNSVTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2015: Blocking variability: Arctic amplification versus Arctic Oscillation. Geophys. Res. Lett., 42, 85868595, doi:10.1002/2015GL065923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2016a: The linear response function of an idealized atmosphere. Part I: Construction using Green’s functions and applications. J. Atmos. Sci., 73, 34233439, doi:10.1175/JAS-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2016b: The linear response function of an idealized atmosphere. Part II: Implications for the practical use of the fluctuation–dissipation theorem and the role of operator’s nonnormality. J. Atmos. Sci., 73, 34413452, doi:10.1175/JAS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., B. Farrell, and Z. Kuang, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, doi:10.10.1002/2014GL060764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28A, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, doi:10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidson, J., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1, 183194, doi:10.1175/1520-0442(1988)001<0183:IOTSHZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and H. Mukougawa, 2011: Role of medium-scale waves on the southern annular mode. J. Geophys. Res., 116, D22107, doi:10.1029/2011JD016293.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026, doi:10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D., and D. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, M., and E. Barnes, 2016: Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM. J. Climate, 29, 52235240, doi:10.1175/JCLI-D-15-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 7, 130139, doi:10.1175/1520-0469(1950)007<0130:TICAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, G. Chen, X.-Q. Yang, and D. A. Burrows, 2014: Quantifying barotropic and baroclinic eddy feedbacks in the persistence of the southern annular mode. Geophys. Res. Lett., 41, 86368644, doi:10.1002/2014GL062210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1990: On the structure of variability of the observed tropospheric and stratospheric zonal-mean zonal wind. J. Atmos. Sci., 47, 17991813, doi:10.1175/1520-0469(1990)047<1799:OTSOVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M., and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcing: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, doi:10.1175/2008JAS2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, doi:10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., K. Yamada, and I. Hirota, 2000: Global characteristics of medium-scale tropopausal waves observed in ECMWF operational data. Mon. Wea. Rev., 128, 38083823, doi:10.1175/1520-0493(2001)129<3808:GCOMST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., and R. A. Plumb, 2016: Sensitivity of the surface responses of an idealized AGCM to the timing of imposed ozone depletion–like polar stratospheric cooling. Geophys. Res. Lett., 43, 23302336, doi:10.1002/2016GL067964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. G. Shepherd, P. Hitchcock, and J. F. Scinocca, 2013: Southern annular mode dynamics in observations and models. Part II: Eddy feedbacks. J. Climate, 26, 52205241, doi:10.1175/JCLI-D-12-00495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 2000: Annular mode in the extratropical circulation. Part I: month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and Y. Li, 2015: Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci., 72, 11171136, doi:10.1175/JAS-D-14-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280, doi:10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., 2000: North Atlantic Oscillation/annular mode: Two paradigms—one phenomenon. Quart. J. Roy. Meteor. Soc., 126, doi:10.1256/smsqj.56401.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., and H. H. Hsu, 1985: Another look at the index cycle. Tellus, 37A, 478486, doi:10.1111/j.1600-0870.1985.tb00445.x.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 13
PDF Downloads 136 136 13

Quantifying the Eddy–Jet Feedback Strength of the Annular Mode in an Idealized GCM and Reanalysis Data

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 Department of Mechanical Engineering, Rice University, Houston, Texas, and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 3 Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

A linear response function (LRF) that relates the temporal tendency of zonal-mean temperature and zonal wind to their anomalies and external forcing is used to accurately quantify the strength of the eddy–jet feedback associated with the annular mode in an idealized GCM. Following a simple feedback model, the results confirm the presence of a positive eddy–jet feedback in the annular mode dynamics, with a feedback strength of 0.137 day−1 in the idealized GCM. Statistical methods proposed by earlier studies to quantify the feedback strength are evaluated against results from the LRF. It is argued that the mean-state-independent eddy forcing reduces the accuracy of these statistical methods because of the quasi-oscillatory nature of the eddy forcing. Assuming the mean-state-independent eddy forcing is sufficiently weak at the low-frequency limit, a new method is proposed to approximate the feedback strength as the regression coefficient of low-pass-filtered eddy forcing onto the low-pass-filtered annular mode index. When time scales longer than 200 days are used for the low-pass filtering, the new method produces accurate results in the idealized GCM compared to the value calculated from the LRF. The estimated feedback strength in the southern annular mode converges to 0.121 day−1 in reanalysis data using the new method. This work also highlights the significant contribution of medium-scale waves, which have periods less than 2 days, to the annular mode dynamics. Such waves are filtered out if eddy forcing is calculated from daily mean data. The present study provides a framework to quantify the eddy–jet feedback strength in GCMs and reanalysis data.

Current affiliation: Earth Institute, Columbia University, New York, New York.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ding Ma, dm3277@columbia.edu

Abstract

A linear response function (LRF) that relates the temporal tendency of zonal-mean temperature and zonal wind to their anomalies and external forcing is used to accurately quantify the strength of the eddy–jet feedback associated with the annular mode in an idealized GCM. Following a simple feedback model, the results confirm the presence of a positive eddy–jet feedback in the annular mode dynamics, with a feedback strength of 0.137 day−1 in the idealized GCM. Statistical methods proposed by earlier studies to quantify the feedback strength are evaluated against results from the LRF. It is argued that the mean-state-independent eddy forcing reduces the accuracy of these statistical methods because of the quasi-oscillatory nature of the eddy forcing. Assuming the mean-state-independent eddy forcing is sufficiently weak at the low-frequency limit, a new method is proposed to approximate the feedback strength as the regression coefficient of low-pass-filtered eddy forcing onto the low-pass-filtered annular mode index. When time scales longer than 200 days are used for the low-pass filtering, the new method produces accurate results in the idealized GCM compared to the value calculated from the LRF. The estimated feedback strength in the southern annular mode converges to 0.121 day−1 in reanalysis data using the new method. This work also highlights the significant contribution of medium-scale waves, which have periods less than 2 days, to the annular mode dynamics. Such waves are filtered out if eddy forcing is calculated from daily mean data. The present study provides a framework to quantify the eddy–jet feedback strength in GCMs and reanalysis data.

Current affiliation: Earth Institute, Columbia University, New York, New York.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ding Ma, dm3277@columbia.edu
Save