• Elsasser, W. M., 1942: Heat Transfer by Infrared Radiation in the Atmosphere. Harvard University Press, 107 pp.

  • Fu, Q., 1991: Parameterization of radiative processes in vertically nonhomogeneous multiple scattering atmospheres. Ph.D. dissertation, University of Utah, 259 pp. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.]

  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812, doi:10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J. H., 1997: Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul., 2, 235236, doi:10.1016/S1007-5704(97)90008-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J. H., 1999: Variational iteration method—A kind of non-linear analytical technique: Some examples. Int. J. Non-linear Mech., 34, 699708, doi:10.1016/S0020-7462(98)00048-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J. H., 2007: Variational iteration method—Some recent results and new interpretations. J. Comput. Appl. Math., 207, 37, doi:10.1016/j.cam.2006.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jafari, H., 2014: A comparison between the variational iteration method and the successive approximations method. Appl. Math. Lett., 32, 15, doi:10.1016/j.aml.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kylling, A., K. Stamnes, and S. C. Tsay, 1995: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media. J. Atmos. Chem., 21, 115150, doi:10.1007/BF00696577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., 2002: Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, including cloud scattering and overlap. J. Atmos. Sci., 59, 33023320, doi:10.1175/1520-0469(2002)059<3302:AFUCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and V. Ramaswamy, 1996: Four-stream spherical harmonic expansion approximation for solar radiative transfer. J. Atmos. Sci., 53, 11741186, doi:10.1175/1520-0469(1996)053<1174:FSSHEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and S. Dobbie, 1998: Four-stream isosector approximation for solar radiative transfer. J. Atmos. Sci., 55, 558567, doi:10.1175/1520-0469(1998)055<0558:FSIAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Q. Fu, 2000: Absorption approximation with scattering effect for infrared radiation. J. Atmos. Sci., 57, 29052914, doi:10.1175/1520-0469(2000)057<2905:AAWSEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and H. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., Q. Fu, H. Zhang, J. Su, Q. Yang, and Z. Sun, 2013: Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 117, 114122, doi:10.1016/j.jqsrt.2012.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindner, T. H., and J. Li, 2000: Parameterization of the optical properties for water clouds in the infrared. J. Climate, 13, 17971805, doi:10.1175/1520-0442(2000)013<1797:POTOPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1974: Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 31, 14731475, doi:10.1175/1520-0469(1974)031<1473:ATSAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 19401947, doi:10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., A. Xiao, and L. Su, 2013: Convergence of variational iteration method for second-order delay differential equations. J. Appl. Math., 2013, 634670, doi:10.1155/2013/634670.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and S. Endo, 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 13 87713 890, doi:10.1002/2014JD022265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, G. J. Zhang, X. Wu, S. Endo, L. Cao, Y. Li, and X. Gao, 2016: Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci., 73, 761773, doi:10.1175/JAS-D-15-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972: Optical properties of the atmosphere. Air Force Rep. AFCRL-71-0279, 85 pp. [Available from Air Force Geophysics Laboratory, Bedford, MA 01731.]

    • Crossref
    • Export Citation
  • Oreopoulos, L., and et al. , 2012: The continual intercomparison of radiation codes: Results from Phase I. J. Geophys. Res., 117, D06118, doi:10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and A. Uchiyama, 1992: Accuracy of the delta-four-stream approximation in inhomogeneous scattering atmospheres. J. Meteor. Soc. Japan, 70, 10971110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, doi:10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, J. B., 1951: Approximate integration of the equation of transfer. Mon. Not. Roy. Astron. Soc., 111, 377386, doi:10.1093/mnras/111.4.377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatari, M., and M. Dehghan, 2007: On the convergence of He’s variational iteration method. J. Comput. Appl. Math., 207, 121128, doi:10.1016/j.cam.2006.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, G. E., and K. Stamnes, 1999: Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 517 pp.

    • Crossref
    • Export Citation
  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W., 1977: The delta–M method: Rapid yet accurate radiative flux calculations. J. Atmos. Sci., 34, 14081422, doi:10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., K. Liou, L. Bi, C. Liu, B. Yi, and B. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263, doi:10.1007/s00376-014-0011-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., K. Wu, J. Li, J.-Q. Zhao, and J. Li, 2016: Analytical infrared delta-four-stream adding method from invariance principle. J. Atmos. Sci., 73, 41714188, doi:10.1175/JAS-D-15-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., F. Zhang, Q. Fu, Z. Shen, and P. Lu, 2010: Two- and four-stream combination approximations for computation of diffuse actinic fluxes. J. Atmos. Sci., 67, 32383252, doi:10.1175/2010JAS3370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 5
PDF Downloads 25 25 1

Variational Iteration Method for Infrared Radiative Transfer in a Scattering Medium

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China, and Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan
  • | 2 Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Canadian Center for Climate Modeling and Analysis, University of Victoria, Victoria, British Columbia, Canada
  • | 4 Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 5 Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan
© Get Permissions
Restricted access

Abstract

A new scheme is proposed for using the variational iteration method (VIM) to solve the problem of infrared radiative transfer in a scattering medium. This scheme allows the zeroth-order solution to be identified as the absorption approximation and the scattering effect is included in the first-order iteration. The upward and downward intensities are calculated separately in VIM, which simplifies the calculation process. By applying VIM to two single-layer scattering media and a full radiation algorithm with gaseous transmission, it is found that VIM is generally more accurate than the discrete-ordinates method (DOM), especially for cirrostratus. Computationally, VIM is slightly faster than DOM in the two-stream case but more than twice as fast in the four-stream case. In view of its high overall accuracy and computational efficiency, VIM is well suited to solving infrared radiative transfer in climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jiangnan Li, jiangnan.li@canada.ca

Abstract

A new scheme is proposed for using the variational iteration method (VIM) to solve the problem of infrared radiative transfer in a scattering medium. This scheme allows the zeroth-order solution to be identified as the absorption approximation and the scattering effect is included in the first-order iteration. The upward and downward intensities are calculated separately in VIM, which simplifies the calculation process. By applying VIM to two single-layer scattering media and a full radiation algorithm with gaseous transmission, it is found that VIM is generally more accurate than the discrete-ordinates method (DOM), especially for cirrostratus. Computationally, VIM is slightly faster than DOM in the two-stream case but more than twice as fast in the four-stream case. In view of its high overall accuracy and computational efficiency, VIM is well suited to solving infrared radiative transfer in climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jiangnan Li, jiangnan.li@canada.ca
Save