• Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic oscillation or North Atlantic oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, doi:10.1002/qj.479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, doi:10.1029/1999GL010945.

  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2005: A stochastic model for the spatial structure of annular patterns of variability and the NAO. J. Climate, 18, 21022118, doi:10.1175/JCLI3337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. M. Polvani, 2008: Testing the annular mode autocorrelation timescale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, doi:10.1175/2007MWR2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A, 4150, doi:10.1034/j.1600-0870.1990.00005.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1, 11771198, doi:10.1175/1520-0442(1988)001<1177:IVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1970: Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98, 708716, doi:10.1175/1520-0493(1970)098<0708:LSFOMM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 1996: Mechanism of zonal index evolution in a two-layer model. J. Atmos. Sci., 53, 22322246, doi:10.1175/1520-0469(1996)053<2232:MOZIEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1951: Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteor., 8, 5259, doi:10.1175/1520-0469(1951)008<0052:SAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Ferreira, J.-M. Campin, and D. Enderton, 2007: Mean climate and variability of the atmosphere and ocean on an aquaplanet. J. Atmos. Sci., 64, 42704286, doi:10.1175/2007JAS2226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1991: The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci., 48, 429441, doi:10.1175/1520-0469(1991)048<0429:TDOLFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452455, doi:10.1038/20905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, J. D. Haigh, and S. N. Sparrow, 2010: The impact of the state of the troposphere on the response to stratospheric heating in a simplified GCM. J. Climate, 23, 61666185, doi:10.1175/2010JCLI3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, doi:10.1126/science.1247660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., B. R. Crow, and E. A. Barnes, 2017: Intraseasonal periodicity in the Southern Hemisphere circulation on regional spatial scales. J. Atmos. Sci., in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. A. Paolino, 1981: Characteristic patterns of variability of sea level pressure in the Northern Hemisphere. Mon. Wea. Rev., 109, 11691189, doi:10.1175/1520-0493(1981)109<1169:CPOVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280, doi:10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15, 19871991, doi:10.1175/1520-0442(2002)015<1987:TPCOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, doi:10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 10
PDF Downloads 40 40 10

What Makes an Annular Mode “Annular”?

View More View Less
  • 1 Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Annular patterns with a high degree of zonal symmetry play a prominent role in the natural variability of the atmospheric circulation and its response to external forcing. But despite their apparent importance for understanding climate variability, the processes that give rise to their marked zonally symmetric components remain largely unclear. Here the authors use simple stochastic models in conjunction with an atmospheric model and observational analyses to explore the conditions under which annular patterns arise from empirical orthogonal function (EOF) analysis of the flow. The results indicate that annular patterns arise not only from zonally coherent fluctuations in the circulation (i.e., “dynamical annularity”) but also from zonally symmetric statistics of the circulation in the absence of zonally coherent fluctuations (i.e., “statistical annularity”). It is argued that the distinction between dynamical and statistical annular patterns derived from EOF analysis can be inferred from the associated variance spectrum: larger differences in the variance explained by an annular EOF and successive EOFs generally indicate underlying dynamical annularity. The authors provide a simple recipe for assessing the conditions that give rise to annular EOFs of the circulation. When applied to numerical models, the recipe indicates dynamical annularity in parameter regimes with strong feedbacks between eddies and the mean flow. When applied to observations, the recipe indicates that annular EOFs generally derive from statistical annularity of the flow in the midlatitude troposphere but from dynamical annularity in both the stratosphere and the mid–high-latitude Southern Hemisphere troposphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edwin P. Gerber, gerber@cims.nyu.edu

Abstract

Annular patterns with a high degree of zonal symmetry play a prominent role in the natural variability of the atmospheric circulation and its response to external forcing. But despite their apparent importance for understanding climate variability, the processes that give rise to their marked zonally symmetric components remain largely unclear. Here the authors use simple stochastic models in conjunction with an atmospheric model and observational analyses to explore the conditions under which annular patterns arise from empirical orthogonal function (EOF) analysis of the flow. The results indicate that annular patterns arise not only from zonally coherent fluctuations in the circulation (i.e., “dynamical annularity”) but also from zonally symmetric statistics of the circulation in the absence of zonally coherent fluctuations (i.e., “statistical annularity”). It is argued that the distinction between dynamical and statistical annular patterns derived from EOF analysis can be inferred from the associated variance spectrum: larger differences in the variance explained by an annular EOF and successive EOFs generally indicate underlying dynamical annularity. The authors provide a simple recipe for assessing the conditions that give rise to annular EOFs of the circulation. When applied to numerical models, the recipe indicates dynamical annularity in parameter regimes with strong feedbacks between eddies and the mean flow. When applied to observations, the recipe indicates that annular EOFs generally derive from statistical annularity of the flow in the midlatitude troposphere but from dynamical annularity in both the stratosphere and the mid–high-latitude Southern Hemisphere troposphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edwin P. Gerber, gerber@cims.nyu.edu
Save