• Becker, E., G. Schmitz, and R. Geprägs, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49A, 182199, doi:10.1034/j.1600-0870.1997.t01-1-00003.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 16431654, doi:10.1175/2009JAS3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, doi:10.1029/2007GL030971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett, 35, L18709, doi:10.1029/2008GL035084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., R. T. Pierrehumbert, and J. L. Mitchell, 2008: Axisymmetric, nearly inviscid circulations in non-condensing radiative-convective atmospheres. Quart. J. Roy. Meteor. Soc., 134, 12691285, doi:10.1002/qj.271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1971: Analytic model for zonal winds in the tropics. Mon. Wea. Rev., 99, 501510, doi:10.1175/1520-0493(1971)099<0501:AMFZWI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291534, doi:10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. K. Tung, 1996: A simple model of nonlinear Hadley circulation with an ITCZ: Analytic and numerical solutions. J. Atmos. Sci., 53, 12411261, doi:10.1175/1520-0469(1996)053<1241:ASMONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, doi:10.1175/JCLI-D-15-0424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., D. M. W. Frierson, I. M. Held, O. Pauluis, and G. K. Vallis, 2007: Resolving convection in a global hypohydrostatic model. J. Atmos. Sci., 64, 20612075, doi:10.1175/JAS3929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. McIntyre, T. Shepherd, C. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. Geophysical Fluid Dynamics Program, Woods Hole, MA, Woods Hole Oceanographic Institution, 54 pp. [Available online at https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332.]

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmospheres. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 28592871, doi:10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705, doi:10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2008: Extent of Hadley circulations in dry atmospheres. Geophys. Res. Lett., 35, L23803, doi:10.1029/2008GL035847.

  • Kuang, Z., P. N. Blossey, and C. S. Bretherton, 2005: A new approach for 3D cloud-resolving simulations of large-scale atmospheric circulation. Geophys. Res. Lett, 32, L02809, doi:10.1029/2004GL021024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1956: Forced and free meridional circulations in the atmosphere. J. Meteor., 13, 561568, doi:10.1175/1520-0469(1956)013<0561:FAFMCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, doi:10.1175/2010JAS3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, doi:10.1175/JAS-D-14-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., D. M. W. Frierson, S. T. Garner, I. M. Held, and G. K. Vallis, 2006: The hypohydrostatic rescaling and its impacts on modeling of atmospheric convection. Theor. Comput. Fluid Dyn., 20, 485499, doi:10.1007/s00162-006-0026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., 1981: Wave–mean flow interactions in the atmosphere. J. Atmos. Sci., 38, 13401359, doi:10.1175/1520-0469(1981)038<1340:WMFIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 17901799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., 1994: Hadley circulations in radiative–convective equilibrium in an axially symmetric atmosphere. J. Atmos. Sci., 51, 19471968, doi:10.1175/1520-0469(1994)051<1947:HCIREI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., M. Shiobara, and M. Takahashi, 1995: Hadley circulations and their roles in the global angular momentum budget in two-and three-dimensional models. Tellus, 47A, 548560, doi:10.1034/j.1600-0870.1995.00104.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34, 280296, doi:10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1984: Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J. Atmos. Sci., 41, 10931115, doi:10.1175/1520-0469(1984)041<1093:ROTAAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, doi:10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulations. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophys. Res. Lett., 43, 45664575, doi:10.1002/2016GL068712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative–convective equilibrium. Geophys. Res. Lett., 40, 43984403, doi:10.1002/grl.50796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., 73, 24272444, doi:10.1175/JAS-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, doi:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813, doi:10.1029/2004GL022304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, doi:10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1988a: The dynamical range of global circulations—I. Climate Dyn., 2, 205260, doi:10.1007/BF01371320.

  • Williams, G. P., 1988b: The dynamical range of global circulations—II. Climate Dyn., 3, 4584, doi:10.1007/BF01080901.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 20
PDF Downloads 83 83 23

Eddy Influences on the Strength of the Hadley Circulation: Dynamic and Thermodynamic Perspectives

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

The strength of the equinoctial Hadley circulation (HC) is investigated in idealized simulations conducted on an equatorial beta plane in which the zonal width of the domain is varied to either permit or suppress large-scale eddies. The presence of such eddies is found to amplify the HC by a factor of 2–3 in simulations with slab-ocean boundary conditions or with a simple representation of ocean heat transport. Additional simulations in which the eddy forcing is prescribed externally indicate that this amplification is primarily associated with large-scale eddy momentum fluxes rather than large-scale eddy heat fluxes. These results contrast with results from simulations with fixed distributions of sea surface temperature (SST), in which the HC strength has been found to be relatively insensitive to large-scale eddy momentum fluxes.

In both the interactive- and fixed-SST cases, the influence of nonlinear momentum advection by the mean flow complicates efforts to use the angular-momentum budget to constrain the HC strength. However, a strong relationship is found between the HC strength and a measure of the meridional gradient of boundary layer entropy, indicating a possible thermodynamic control on the HC strength. In simulations with interactive SSTs, meridional eddy momentum fluxes affect the boundary layer entropy by inducing a low-level frictional flow that reduces the ability of the HC to transport heat poleward. This allows for the maintenance of a large meridional entropy gradient in the presence of a strong HC. The results highlight the potential utility of a thermodynamic perspective for understanding the HC in flow regimes for which dynamical constraints may be difficult to apply.

Current affiliation: School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martin S. Singh, martin.singh@monash.edu

Abstract

The strength of the equinoctial Hadley circulation (HC) is investigated in idealized simulations conducted on an equatorial beta plane in which the zonal width of the domain is varied to either permit or suppress large-scale eddies. The presence of such eddies is found to amplify the HC by a factor of 2–3 in simulations with slab-ocean boundary conditions or with a simple representation of ocean heat transport. Additional simulations in which the eddy forcing is prescribed externally indicate that this amplification is primarily associated with large-scale eddy momentum fluxes rather than large-scale eddy heat fluxes. These results contrast with results from simulations with fixed distributions of sea surface temperature (SST), in which the HC strength has been found to be relatively insensitive to large-scale eddy momentum fluxes.

In both the interactive- and fixed-SST cases, the influence of nonlinear momentum advection by the mean flow complicates efforts to use the angular-momentum budget to constrain the HC strength. However, a strong relationship is found between the HC strength and a measure of the meridional gradient of boundary layer entropy, indicating a possible thermodynamic control on the HC strength. In simulations with interactive SSTs, meridional eddy momentum fluxes affect the boundary layer entropy by inducing a low-level frictional flow that reduces the ability of the HC to transport heat poleward. This allows for the maintenance of a large meridional entropy gradient in the presence of a strong HC. The results highlight the potential utility of a thermodynamic perspective for understanding the HC in flow regimes for which dynamical constraints may be difficult to apply.

Current affiliation: School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martin S. Singh, martin.singh@monash.edu
Save