On the Processes Leading to the Rapid Intensification of Typhoon Megi (2010)

Chuan-Chieh Chang Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chuan-Chieh Chang in
Current site
Google Scholar
PubMed
Close
and
Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chieh Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The processes leading to the rapid intensification (RI) of Typhoon Megi (2010) are explored with a convection-permitting full-physics model and a sensitivity experiment using a different microphysical scheme. It is found that the temporary active convection, gradually strengthened primary circulation, and a warm core developing at midlevels tend to serve as precursors to RI. The potential vorticity (PV) budget and Sawyer–Eliassen model are utilized to examine the causes and effects of those precursors. Results show that the secondary circulation, triggered by the latent heat associated with active convection, acts to strengthen the mid- to upper-level primary circulation by transporting the larger momentum toward the upper layers. The increased inertial stability at mid- to upper levels not only increases the heating efficiency but also prevents the warm-core structure from being disrupted by the ventilation effect. The warming above 5 km effectively lowers the surface pressure.

It is identified that the strong secondary circulation helps to accomplish the midlevel warming within the eye. The results based on potential temperature (θ) budget suggest that the mean subsidence associated with detrainment of active convection is the major process contributing to the formation of a midlevel warm core. On the possible causes triggering the inner-core active convection, it is suggested that the gradually increased vortex-scale surface enthalpy flux has a leading role in the development of vigorous convection. The results also highlight the potentially dominant role of weak to moderate convection in the onset of RI, while the convective bursts play a supporting role. Based on the aforementioned analyses, a schematic diagram is shown to describe the plausible path leading to RI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw

Abstract

The processes leading to the rapid intensification (RI) of Typhoon Megi (2010) are explored with a convection-permitting full-physics model and a sensitivity experiment using a different microphysical scheme. It is found that the temporary active convection, gradually strengthened primary circulation, and a warm core developing at midlevels tend to serve as precursors to RI. The potential vorticity (PV) budget and Sawyer–Eliassen model are utilized to examine the causes and effects of those precursors. Results show that the secondary circulation, triggered by the latent heat associated with active convection, acts to strengthen the mid- to upper-level primary circulation by transporting the larger momentum toward the upper layers. The increased inertial stability at mid- to upper levels not only increases the heating efficiency but also prevents the warm-core structure from being disrupted by the ventilation effect. The warming above 5 km effectively lowers the surface pressure.

It is identified that the strong secondary circulation helps to accomplish the midlevel warming within the eye. The results based on potential temperature (θ) budget suggest that the mean subsidence associated with detrainment of active convection is the major process contributing to the formation of a midlevel warm core. On the possible causes triggering the inner-core active convection, it is suggested that the gradually increased vortex-scale surface enthalpy flux has a leading role in the development of vigorous convection. The results also highlight the potentially dominant role of weak to moderate convection in the onset of RI, while the convective bursts play a supporting role. Based on the aforementioned analyses, a schematic diagram is shown to describe the plausible path leading to RI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw
Save
  • Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458, doi:10.1175/2009MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B., and G. Hakim, 2015: Sensitivity of intensifying Atlantic hurricanes to vortex structure. Quart. J. Roy. Meteor. Soc., 141, 25382551, doi:10.1002/qj.2540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158, doi:10.1175/2008JAS2707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2012: Atlantic and eastern North Pacific forecast verification. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, OFCM. [Available online at http://www.ofcm.gov/meetings/TCORF/ihc12/Presentations/01b-Session/03-IHC_2012_Verification_(2012)_v2.pdf.]

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, doi:10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2014: Impacts of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc., 95, 14051418, doi:10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5 (2), 1960.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, doi:10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falvey, R., 2012: Summary of the 2011 western Pacific/Indian Ocean tropical cyclone season. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, OFCM. [Available online at http://www.ofcm.gov/meetings/TCORF/ihc12/Presentations/01b-Session/05-JTWC_2012_IHC_Final.pdf.]

  • Fang, J., and F. Zhang, 2016: Contribution of tropical waves to the formation of Superryphoon Megi (2010). J. Atmos. Sci., 73, 43874405, doi:10.1175/JAS-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, doi:10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016: Varied pathways for simulated tropical cyclone rapid intensification. Part II: Vertical motion and cloud populations. Quart. J. Roy. Meteor. Soc., 142, 18321846, doi:10.1002/qj.2778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, D. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, doi:10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF Single-Moment 6-class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., N. Ying, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. J., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 41944217, doi:10.1175/JAS-D-14-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. Mcadie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, doi:10.1175/2008MWR2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, doi:10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, doi:10.1175/JAS-D-12-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W., H. Chen, and D. Zhang, 2015: On the rapid intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 38293849, doi:10.1175/JAS-D-14-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, doi:10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacona, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102D, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, doi:10.1175/2010MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347, doi:10.1175/BAMS-87-10-1335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, doi:10.1175/MWR-D-11-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380.

  • Penny, A. B., P. A. Harr, and J. D. Doyle, 2016: Sensitivity to the representation of microphysical processes in numerical simulations during tropical storm formation. Mon. Wea. Rev., 144, 36113630, doi:10.1175/MWR-D-15-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, and modified 3DVAR analysis. NOAA/NWS Tech. Procedures Bull. 488, 15 pp. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

  • Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, doi:10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., J. Ming, and P. Chi, 2012: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Wea. Forecasting, 27, 411423, doi:10.1175/WAF-D-11-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. LaFontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl, 1994: High-resolution imaging of rain systems with the advanced microwave precipitation radiometer. J. Atmos. Oceanic Technol., 11, 849857, doi:10.1175/1520-0426(1994)011<0849:HRIORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. House, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, doi:10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, doi:10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, doi:10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, doi:10.1175/MWR-D-11-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014a: Characteristics of convective processes and vertical vorticity from the tropical wave to the tropical cyclone stage in the high-resolution numerical model simulations of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896915, doi:10.1175/JAS-D-13-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014b: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-N. Wu, H.-H. Wei, and S. F. Abarca, 2016: The role of convective heating in tropical cyclone eyewall ring evolution. J. Atmos. Sci., 73, 319330, doi:10.1175/JAS-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2788 1461 148
PDF Downloads 950 158 6