• Alexander, M., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res., 103, 86278640, doi:10.1029/97JD03325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett., 42, 68606867, doi:10.1002/2015GL065234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M., and et al. , 2008: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res., 113, D15S18, doi:10.1029/2007JD008807.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D., J. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Beres, J., M. Alexander, and J. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, doi:10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccara, G., A. Hertzog, R. Vincent, and F. Vial, 2008: Estimation of gravity-wave momentum fluxes and phase speeds from long-duration stratospheric balloon flights. 1. Theory and simulations. J. Atmos. Sci., 65, 30423055, doi:10.1175/2008JAS2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushell, A., N. Butchart, S. Derbyshire, D. Jackson, G. Shutts, S. Vosper, and S. Webster, 2015: Parameterized gravity wave momentum fluxes from sources related to convection and large-scale precipitation processes in a global atmosphere model. J. Atmos. Sci., 72, 43494371, doi:10.1175/JAS-D-15-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, doi:10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, doi:10.1002/2015GL063298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., F. Lott, and A. Hertzog, 2014: Intermittency in a stochastic parameterization of nonorographic gravity waves. J. Geophys. Res. Atmos., 119, 11 90511 919, doi:10.1002/2014JD022002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., F. Lott, V. Jewtoukoff, R. Plougonven, and A. Hertzog, 2016: On the gravity wave forcing during the southern stratospheric final warming in LMDZ. J. Atmos. Sci., 73, 32133226, doi:10.1175/JAS-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41, 33963404, doi:10.1175/1520-0469(1984)041<3396:IWITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Alexander, and C. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109, D20103, doi:10.1029/2004JD004752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, J. Gille, C. Heppelwhite, M. Mlynczak, J. Russell III, and M. Riese, 2011: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res., 116, D19107, doi:10.1029/2011JD015821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and M. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

  • Geller, M., and J. Gong, 2010: Gravity wave kinetic, potential, and vertical fluctuation energies as indicators of different frequency gravity waves. J. Geophys. Res., 115, D11111, doi:10.1029/2009JD012266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M., and et al. , 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E., J. Doyle, S. Eckermann, Q. Jiang, and P. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, doi:10.1175/JAS-D-13-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., G. Boccara, R. Vincent, F. Vial, and P. Coquerez, 2008: Estimation of gravity-wave momentum fluxes and phase speeds from long-duration stratospheric balloon flights. 2. Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., M. Alexander, and R. Plougonven, 2012: On the probability density functions of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, doi:10.1175/JAS-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Cámara, and F. Lott, 2015: Gravity waves in the Southern Hemisphere derived from balloon observations and ECMWF analyses. J. Atmos. Sci., 72, 34493468, doi:10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalisch, S., P. Preusse, M. Ern, S. D. Eckermann, and M. Riese, 2014: Differences in gravity wave drag between realistic oblique and assumed vertical propagation. J. Geophys. Res. Atmos., 119, 10 08110 099, doi:10.1002/2014JD021779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpert, E., W. Stahel, and M. Abbt, 2001: Log-normal distributions across the sciences: Keys and clues. BioScience, 51, 341352, doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, doi:10.1002/jgrd.50705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2010: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci., 67, 157170, doi:10.1175/2009JAS3134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2012: Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci., 69, 21342151, doi:10.1175/JAS-D-11-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. Shepherd, S. Polaravapu, and S. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and H. Teitelbaum, 2003: Comparison of a large-scale inertia–gravity wave as seen in the ECMWF and from radiosondes. Geophys. Res. Lett., 30, 1954, doi:10.1029/2003GL017716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, doi:10.1002/2012RG000419.

  • Plougonven, R., H. Teitelbaum, and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., D. Muraki, and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62, 15451559, doi:10.1175/JAS3426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and M. Alexander, 2015: Case studies of nonorographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. Atmos., 120, 12781299, doi:10.1002/2014JD022332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preusse, P., S. Eckermann, and M. Ern, 2008: Transparency of the atmosphere to short horizontal wavelength gravity waves. J. Geophys. Res., 113, D24104, doi:10.1029/2007JD009682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preusse, P., M. Ern, P. Bechtold, S. Eckermann, S. Kalisch, Q. Trinh, and M. Riese, 2014: Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys., 14, 10 48310 508, doi:10.5194/acp-14-10483-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and et al. , 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, doi:10.1175/2009BAMS2764.1.

  • Ribstein, B., U. Achatz, and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model. J. Geophys. Res. Space Phys., 120, 67956817, doi:10.1002/2015JA021349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J., F. Sassi, and R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., and M. Yoshiki, 2008: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J. Atmos. Sci., 65, 37193735, doi:10.1175/2008JAS2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takayashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, doi:10.1029/2009GL039908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, doi:10.1175/JAS-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, doi:10.1029/2011JD015794.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., and S. Vosper, 2011: Stratospheric gravity waves revealed in NWP forecast models. Quart. J. Roy. Meteor. Soc., 137, 303317, doi:10.1002/qj.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124, doi:10.1175/JAS-3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, doi:10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2007: Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech., 584, 373396, doi:10.1017/S002211200700643X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R., and A. Hertzog, 2014: The response of superpressure balloons to gravity wave motions. Atmos. Meas. Tech., 7, 10431055, doi:10.5194/amt-7-1043-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R., A. Hertzog, G. Boccara, and F. Vial, 2007: Quasi-Lagrangian superpressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres. Geophys. Res. Lett., 34, L19804, doi:10.1029/2007GL031072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C., S. Osprey, and J. Gille, 2013: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. Atmos., 118, 10 98010 993, doi:10.1002/jgrd.50869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and S. Eckermann, 2008: Global gravity wave variances from Aura MLS: Characteristics and interpretation. J. Atmos. Sci., 65, 36953718, doi:10.1175/2008JAS2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. Koch, C. Davis, and M. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large amplitude mesoscale gravity wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245, doi:10.1002/qj.49712757702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., and D. Peters, 2006: Simulation of inertia–gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci., 63, 32533276, doi:10.1175/JAS3805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., and D. Peters, 2008: Parameterization of strong stratospheric inertia–gravity waves forced by poleward-breaking Rossby waves. Mon. Wea. Rev., 136, 98119, doi:10.1175/2007MWR2060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 150 31
PDF Downloads 114 114 19

On the Relation between Gravity Waves and Wind Speed in the Lower Stratosphere over the Southern Ocean

View More View Less
  • 1 Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Université Paris-Saclay, Palaiseau, France
  • | 2 Laboratoire de Météorologie Dynamique/IPSL, CNRS, École Normale Supérieure, PSL Research University, Paris, France
  • | 3 Laboratoire de Météorologie Dynamique/IPSL, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
© Get Permissions
Restricted access

Abstract

The relationship between gravity wave momentum fluxes and local wind speed is investigated for oceanic regions at high southern latitudes during austral spring. The motivation is to better describe the gravity wave field by identifying a simple relationship between gravity waves and the large-scale flow. The tools used to describe the gravity waves are probability density functions of the gravity wave momentum fluxes. Three independent datasets covering high latitudes in the Southern Hemisphere springtime are analyzed: simulations with a mesoscale model, analyses from the European Centre for Medium-Range Weather Forecasts, and observations from superpressure balloons of the Concordiasi campaign in 2010. A remarkably robust relation is found, with stronger momentum fluxes much more likely in regions of strong winds. The tails of the probability density functions are well described as lognormal. The median momentum flux increases linearly with background wind speed: for winds stronger than 50 m s−1, the median gravity wave momentum fluxes are about 4 times larger than for winds weaker than 10 m s−1. From model output, this relation is found to be relevant from the tropopause to the midstratosphere at least. The flux dependence on wind speed shows a somewhat steeper slope at higher altitude. Several different processes contribute to this relation, involving both the distribution of sources and the effects of propagation and filtering. It is argued that the location of tropospheric sources is the main contributor in the upper troposphere and lowermost stratosphere and that lateral propagation into regions of strong winds becomes increasingly important above.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Riwal Plougonven, riwal.plougonven@polytechnique.org

Abstract

The relationship between gravity wave momentum fluxes and local wind speed is investigated for oceanic regions at high southern latitudes during austral spring. The motivation is to better describe the gravity wave field by identifying a simple relationship between gravity waves and the large-scale flow. The tools used to describe the gravity waves are probability density functions of the gravity wave momentum fluxes. Three independent datasets covering high latitudes in the Southern Hemisphere springtime are analyzed: simulations with a mesoscale model, analyses from the European Centre for Medium-Range Weather Forecasts, and observations from superpressure balloons of the Concordiasi campaign in 2010. A remarkably robust relation is found, with stronger momentum fluxes much more likely in regions of strong winds. The tails of the probability density functions are well described as lognormal. The median momentum flux increases linearly with background wind speed: for winds stronger than 50 m s−1, the median gravity wave momentum fluxes are about 4 times larger than for winds weaker than 10 m s−1. From model output, this relation is found to be relevant from the tropopause to the midstratosphere at least. The flux dependence on wind speed shows a somewhat steeper slope at higher altitude. Several different processes contribute to this relation, involving both the distribution of sources and the effects of propagation and filtering. It is argued that the location of tropospheric sources is the main contributor in the upper troposphere and lowermost stratosphere and that lateral propagation into regions of strong winds becomes increasingly important above.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Riwal Plougonven, riwal.plougonven@polytechnique.org
Save