• Bartlett, J. T., and P. R. Jonas, 1972: On the dispersion of the sizes of droplets growing by condensation in turbulent clouds. Quart. J. Roy. Meteor. Soc., 98, 150164, doi:10.1002/qj.49709841512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beals, M., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L. Stith, 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8790, doi:10.1126/science.aab0751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celani, A., G. Falkovich, A. Mazzino, and A. Seminara, 2005: Droplet condensation in turbulent flows. Europhys. Lett., 70, 775781, doi:10.1209/epl/i2005-10040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, doi:10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., R. J. Charlson, and J. H. Seinfeld, 1997: Kinetic limitations on droplet formation in clouds. Nature, 390, 594596, doi:10.1038/37576.

  • Chuang, P. Y., E. W. Saw, J. D. Small, R. A. Shaw, C. M. Sipperley, G. A. Payne, and W. Bachalo, 2008: Airborne phase doppler interferometry for cloud microphysical measurements. Aerosol Sci. Technol., 42, 685703, doi:10.1080/02786820802232956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, doi:10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., and et al. , 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, doi:10.1002/qj.1897.

  • Devenish, B. J., K. Furtado, and D. J. Thomson, 2016: Analytical solutions of the supersaturation equation for a warm cloud. J. Atmos. Sci., 73, 34533465, doi:10.1175/JAS-D-15-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditas, F., R. A. Shaw, H. Siebert, M. Simmel, B. Wehner, and A. Wiedensohler, 2012: Aerosols–cloud microphysics-thermodynamics-turbulence: Evaluating supersaturation in a marine stratocumulus cloud. Atmos. Chem. Phys., 12, 24592468, doi:10.5194/acp-12-2459-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., 1980: A saturation hygrometer for the measurement of relative humidity between 95 and 105%. J. Appl. Meteor., 19, 11961208, doi:10.1175/1520-0450(1980)019<1196:ASHFTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., 1991: Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci., 48, 25692588, doi:10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 12, 555563, doi:10.1364/AO.12.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, K. E., A. Makulski, S. P. Malinowski, and R. Busen, 1997: A new ultrafast thermometer for airborne measurements in clouds. J. Atmos. Oceanic Technol., 14, 217227, doi:10.1175/1520-0426(1997)014<0217:ANUTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., J. M. Reisner, and M. Andrejczuk, 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493969, doi:10.1175/2006JAS2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., M. Pinsky, and A. Khain, 2013: A new mechanism of droplet size distribution broadening during diffusional growth. J. Atmos. Sci., 70, 20512071, doi:10.1175/JAS-D-12-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., 2009: Simple approximations for condensational growth. Environ. Res. Lett., 4, 015005, doi:10.1088/1748-9326/4/1/015005.

  • Kulmala, M., Ü. Rannik, E. L. Zapadinsky, and C. F. Clement, 1997: The effect of saturation fluctuations on droplet growth. J. Aerosol Sci., 28, 13951409, doi:10.1016/S0021-8502(97)00015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and et al. , 2011: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)—Integrating aerosol research from nano to global scales. Atmos. Chem. Phys., 11, 13 06113 143, doi:10.5194/acp-11-13061-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, doi:10.1175/2008JAS2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, doi:10.1175/2009JAS3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LI-COR, 2015: LI-7500RS—Open path CO2/H2O gas analyzer instruction manual. LI-COR Tech. Rep., 192 pp. [Available online at https://www.licor.com/documents/c7tyf0czqn9ezkq1ki3b.]

  • McFiggans, G., and et al. , 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 25932649, doi:10.5194/acp-6-2593-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. V. Korolev, and A. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793, doi:10.1175/JAS-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, doi:10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, doi:10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2000: Supersaturation intermittency in turbulent clouds. J. Atmos. Sci., 57, 34523456, doi:10.1175/1520-0469(2000)057<3452:SIITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., and A. Muschinski, 2001: Relevance of a tuning-fork effect for temperature measurements with the Gill Solent HS ultrasonic anemometer–thermometer. J. Atmos. Oceanic Technol., 18, 13671376, doi:10.1175/1520-0426(2001)018<1367:ROATFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., M. Wendisch, T. Conrath, U. Teichmann, and J. Heintzenberg, 2003: A new tethered balloon-borne payload for fine-scale observations in the cloudy boundary layer. Bound.-Layer Meteor., 106, 461482, doi:10.1023/A:1021242305810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. W. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006: Probing fine-scale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87, 17271738, doi:10.1175/BAMS-87-12-1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, doi:10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and J.-L. Brenguier, Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley Series in Atmospheric Physics and Remote Sensing, Wiley-VCH Verlag GmbH & Co. KGaA, 641 pp.

  • Wieliczka, D. M., S. Weng, and M. R. Querry, 1989: Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water. Appl. Opt., 28, 17141719, doi:10.1364/AO.28.001714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 408 pp.

    • Crossref
    • Export Citation
  • Yang, F., R. Shaw, and H. Xue, 2016: Conditions for super-adiabatic droplet growth after entrainment mixing. Atmos. Chem. Phys., 16, 94219433, doi:10.5194/acp-16-9421-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 17
PDF Downloads 107 107 21

Supersaturation Fluctuations during the Early Stage of Cumulus Formation

View More View Less
  • 1 Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • | 2 Michigan Technological University, Houghton, Michigan
© Get Permissions
Restricted access

Abstract

On time scales that are long compared to the phase relaxation time, a quasi-steady supersaturation sqs is expected to exist in clouds. On shorter time scales, however, turbulent fluctuations of temperature and water vapor concentration should generate fluctuations in supersaturation. The variability of temperature, water vapor, and supersaturation has been measured in situ with submeter resolution in warm, continental, shallow cumulus clouds. Several cumuli with horizontal extents of order 100 m were sampled during their first appearance and development to depths of ~100 m in a growing boundary layer. Fluctuations of the saturation ratio are observed to be approximately normally distributed with standard deviations on the order of 1%. This variability is almost one order of magnitude larger than sqs calculated using simultaneous measurements of the vertical velocity component and the droplet size distribution. It is argued that, depending on the ratio of the phase relaxation and the turbulent mixing time, substantial fluctuations in the supersaturation field can exist on small spatial scales, centered on sqs for the mean state. The observations also suggest that, on larger scales, fluctuations of the supersaturation field are damped by cloud droplet growth. Droplets with diameters of up to 20 μm were observed in the shallow cumulus clouds, whereas the adiabatic diameter was less than 10 μm. Such large droplets may be explained by a few droplets experiencing the highest observed supersaturations for a certain time. Consequences for aerosol activation and droplet size dispersion in a highly fluctuating supersaturation field are briefly discussed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Holger Siebert, siebert@tropos.de

Abstract

On time scales that are long compared to the phase relaxation time, a quasi-steady supersaturation sqs is expected to exist in clouds. On shorter time scales, however, turbulent fluctuations of temperature and water vapor concentration should generate fluctuations in supersaturation. The variability of temperature, water vapor, and supersaturation has been measured in situ with submeter resolution in warm, continental, shallow cumulus clouds. Several cumuli with horizontal extents of order 100 m were sampled during their first appearance and development to depths of ~100 m in a growing boundary layer. Fluctuations of the saturation ratio are observed to be approximately normally distributed with standard deviations on the order of 1%. This variability is almost one order of magnitude larger than sqs calculated using simultaneous measurements of the vertical velocity component and the droplet size distribution. It is argued that, depending on the ratio of the phase relaxation and the turbulent mixing time, substantial fluctuations in the supersaturation field can exist on small spatial scales, centered on sqs for the mean state. The observations also suggest that, on larger scales, fluctuations of the supersaturation field are damped by cloud droplet growth. Droplets with diameters of up to 20 μm were observed in the shallow cumulus clouds, whereas the adiabatic diameter was less than 10 μm. Such large droplets may be explained by a few droplets experiencing the highest observed supersaturations for a certain time. Consequences for aerosol activation and droplet size dispersion in a highly fluctuating supersaturation field are briefly discussed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Holger Siebert, siebert@tropos.de
Save