• Alappattu, D. P., and P. K. Kunhikrishnan, 2010: First observations of turbulence parameters in the troposphere over the Bay of Bengal and the Arabian Sea using radiosonde. J. Geophys. Res., 115, D06105, doi:10.1029/2009JD012916.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., G. Svensson, and M. Tjernström, 2008: On the scale-dependence of the gradient Richardson number in the residual layer. Bound.-Layer Meteor., 127, 5772, doi:10.1007/s10546-007-9251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., L. Kantha, and W. Colgan, 2010: On the use of Slow Ascent Meter-Scale Sampling (SAMS) Radiosondes for observing overturning events in the free atmosphere. J. Atmos. Oceanic Technol., 27, 766775, doi:10.1175/2009JTECHA1310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barat, J., 1983: The fine structure of the stratospheric flow revealed by differential sounding. J. Geophys. Res., 88, 52195228, doi:10.1029/JC088iC09p05219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., and J. P. Duvel, 2012: The event-to-event variability of the boreal winter MJO. Geophys. Res. Lett., 39, L08701, doi:10.1029/2012GL051294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., Y. N. Takayabu, T. Ushiyama, and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, doi:10.1175/2010MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015a: Observation of moisture tendencies related to shallow convection. J. Atmos. Res., 72, 641659, doi:10.1175/JAS-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., M. Katsumata, and K. Yoneyama, 2015b: Turbulent mixing and its impact on lower tropospheric moisture over tropical ocean. Geophys. Res. Lett., 42, 30303037, doi:10.1002/2015GL063868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadet, D., 1977: Energy dissipation within intermittent clear air turbulence patches. J. Atmos. Sci., 34, 137142, doi:10.1175/1520-0469(1977)034<0137:EDWICA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and M. R. Schoeberl, 1984: On the linear approximation of gravity wave saturation in the mesosphere. J. Atmos. Sci., 41, 18931898, doi:10.1175/1520-0469(1984)041<1893:OTLAOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, B. E. Anderson, J. D. W. Barrick, and K. L. Thornhill, 2003: Characterizations of tropospheric turbulence and stability layers from aircraft observations. J. Geophys. Res., 108, 8784, doi:10.1029/2002JD002820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833852, doi:10.1175/2007JTECHA992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, J. L., 2014: Investigation of the island effect on mixed layer top and transition layer top elevations using Bragg Scattering Layer (BSL) analysis of clear-air S-Pol radar retrievals at the Gan site during CINDY2011/DYNAMO/AMIE. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 6B.1. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper243993.html.]

  • Davison, J. L., 2015: A filter for removing sidelobe artifacts in Bragg scattering layer (BSL) analysis for S-band radar. J. Atmos. Oceanic Technol., 32, 12891297, doi:10.1175/JTECH-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013a: A revised conceptual model of the tropical marine boundary layer. Part I: Statistical characterization of the variability inherent in the wintertime trade wind regime over the western tropical Atlantic. J. Atmos. Sci., 70, 30253046, doi:10.1175/JAS-D-12-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, and L. Di Girolamo, 2013b: A revised conceptual model of the tropical marine boundary layer. Part II: Detecting relative humidity layers using Bragg scattering from S-band radar. J. Atmos. Sci., 70, 30253046, doi:10.1175/JAS-D-12-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013c: A revised conceptual model of the tropical marine boundary layer. Part III: Bragg scattering layer statistical properties. J. Atmos. Sci., 70, 30473062, doi:10.1175/JAS-D-12-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1981: Turbulent vertical transport due to thin intermittent mixing layers in the stratosphere and other stable fluids. Science, 211, 10411042, doi:10.1126/science.211.4486.1041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhaka, S. K., R. Bhatnagar, Y. Shibagaki, H. Hashiguchi, S. Fukao, T. Kozu, and V. Panwar, 2011: Characteristics of gravity waves generated in a convective and a non-convective environment revealed from hourly radiosonde observation under CPEA-II campaign. Ann. Geophys., 29, 22592276, doi:10.5194/angeo-29-2259-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., 2015: Initiation and intensification of tropical depressions over the southern Indian Ocean: Influence of the MJO. Mon. Wea. Rev., 143, 21702191, doi:10.1175/MWR-D-14-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., C. Basdevant, H. Bellenger, G. Reverdin, A. Vargas, and J. Vialard, 2009: The Aeroclipper: A new device to explore convective systems and cyclones. Bull. Amer. Meteor. Soc., 90, 6371, doi:10.1175/2008BAMS2500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud-precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, doi:10.1175/JTECH-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. J. Dunkerton, 1985: Fluxes of heat and constituents due to convectively unstable gravity waves. J. Atmos. Sci., 42, 549556, doi:10.1175/1520-0469(1985)042<0549:FOHACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277, doi:10.1029/RS020i006p01247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., T. Tsuda, T. Sato, S. Fukao, and S. Kato, 1988a: Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci., 45, 17411759, doi:10.1175/1520-0469(1988)045<1741:OEOASG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. A. Smith, B. B. Balsley, and C. R. Philbrick, 1988b: Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment. J. Geophys. Res., 93, 70157025, doi:10.1029/JD093iD06p07015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, M. A. Geller, D. A. Lawrence, J. Werne, and B. B. Balsley, 2016: Numerical modeling of multiscale dynamics at a high Reynolds number: Instabilities, turbulence, and an assessment of Ozmidov and Thorpe scales. J. Atmos. Sci., 73, 555578, doi:10.1175/JAS-D-14-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallice, A., F. G. Wienhold, C. R. Hoyle, F. Immler, and T. Peter, 2011: Modeling the ascent of sounding balloons: Derivation of the vertical air motion. Atmos. Meas. Tech., 4, 22352253, doi:10.5194/amt-4-2235-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavrilov, N. M., H. Luce, M. Crochet, F. Dalaudier, and S. Fukao, 2005: Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys., 23, 24012413, doi:10.5194/angeo-23-2401-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and J. Gong, 2010: Gravity wave kinetic, potential, and vertical fluctuation energies as indicators of different frequency gravity waves. J. Geophys. Res., 115, D11111, doi:10.1029/2009JD012266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., and M. A. Geller, 2010: Vertical fluctuation energy in United States high vertical resolution radiosondes data as an indicator of convective gravity wave sources. J. Geophys. Res., 115, D11110, doi:10.1029/2009JD012265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankinson, M. C. N., M. J. Reeder, and T. P. Lane, 2014a: Gravity waves generated by convection during TWP-ICE: 1. Inertia–gravity waves. J. Geophys. Res. Atmos., 119, 52695282, doi:10.1002/2013JD020724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankinson, M. C. N., M. J. Reeder, and T. P. Lane, 2014b: Gravity waves generated by convection during TWP-ICE: 2. High-frequency gravity waves. J. Geophys. Res. Atmos., 119, 53575268, doi:10.1002/2013JD020726.

    • Search Google Scholar
    • Export Citation
  • Hodges, R. R., Jr., 1967: Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res., 72, 34553458, doi:10.1029/JZ072i013p03455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamical Meteorology. 4th ed. International Geophysics Series, Vol. 88, Academic Press, 535 pp.

  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, doi:10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L., and W. Hocking, 2011: Dissipation rates of turbulence kinetic energy in the free atmosphere: MST radar and radiosondes. J. Atmos. Sol.-Terr. Phys., 73, 10431051, doi:10.1016/j.jastp.2010.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., G. L. Roff, and M. J. Reeder, 1996: Gravity wave activity associated with tropical convection detected in TOGA COARE sounding data. Geophys. Res. Lett., 23, 261264, doi:10.1029/96GL00023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, M., T. Ushiyama, K. Yoneyama, and Y. Fujiyoshi, 2008: Combined use of TRMM/PR and disdrometer data to correct reflectivity of ground-based radars. SOLA, 4, 101104, doi:10.2151/sola.2008-026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ki, M.-O., and H.-Y. Chun, 2010: Characteristics and sources of inertia–gravity waves revealed in the KEOP-2007 radiosonde data. Asia-Pac. J. Atmos. Sci., 46, 261277, doi:10.1007/s13143-010-1001-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and F. M. Guest, 2003: Convectively generated gravity waves observed from radiosonde data taken during MCTEX. Quart. J. Roy. Meteor. Soc., 129, 17311740, doi:10.1256/qj.02.196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leena, P. P., M. Venkat Ratman, and B. V. Krishna Murthy, 2012: Inertia gravity wave characteristics and associated fluxes observed using five years of radiosonde measurements over a tropical station. J. Atmos. Sol.-Terr. Phys., 84–85, 3744, doi:10.1016/j.jastp.2012.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., J. Y. Xu, and W. Yuan, 2014: Diurnal variations of turbulence parameters over the tropical oceanic upper troposphere during SCSMEX. Sci. China Technol. Sci., 57, 351359, doi:10.1007/s11431-013-5445-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., S. Fukao, F. Dalaudier, and M. Crochet, 2002: Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques. J. Atmos. Sci., 59, 28852896, doi:10.1175/1520-0469(2002)059<2885:SMEONT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., T. Takai, T. Nakamura, M. Yamamoto, and S. Fukao, 2010a: Simultaneous observations of thin humidity gradients in the lower troposphere with a Raman lidar and the very high-frequency middle- and upper-atmosphere radar. J. Atmos. Oceanic Technol., 27, 950956, doi:10.1175/2010JTECHA1372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., and et al. , 2010b: Observations of Kelvin–Helmholtz instability at a cloud base with the middle and upper atmosphere (MU) and weather radars. J. Geophys. Res., 115, D19116, doi:10.1029/2009JD013519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., T. Nakamura, M. K. Yamamoto, M. Yamamoto, and S. Fukao, 2010c: MU radar and lidar observations of clear-air turbulence underneath cirrus. Mon. Wea. Rev., 138, 438452, doi:10.1175/2009MWR2927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., R. Wilson, F. Dalaudier, H. Hashiguchi, N. Nishi, Y. Shibagaki, and T. Nakajo, 2014: Simultaneous observations of tropospheric turbulence from radiosondes using Thorpe analysis and the VHF MU radar. Radio Sci., 49, 11061123, doi:10.1002/2013RS005355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, D., M. Venkat Ratman, A. K. Patra, B. V. Krishna Murthy, and S. Vijaya Bhaskar Rao, 2010: Turbulence characteristics over tropical station Gadanki (13.5°N, 79.2°E) estimated using high-resolution GPS radiosonde data. J. Geophys. Res., 115, D07102, doi:10.1029/2009JD012347.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv. Akad. Nauk. SSSR, Atmos. Oceanic Phys., 1, 853860.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., J. A. Whiteway, and G. Vaughan, 2001: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106, 51735179, doi:10.1029/2000JD900480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden–Julian oscillation over the Indian Ocean during DYNAMO–AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, doi:10.1002/2014JD022934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457, doi:10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., N. Adams, and T. P. Lane, 1999: Radiosonde observations of partially trapped lee waves over Tasmania, Australia. J. Geophys. Res., 104, 16 71916 727, doi:10.1029/1999JD900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, doi:10.1002/2013JD020799 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the pre-onset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, doi:10.1175/JAS-D-14-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato K., M. Yamamori, S.-Y. Ogino, N. Takahashi, Y. Tomikawa, and T. Yamanouchi, 2003: A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). J. Geophys. Res., 108, 4491, doi:10.1029/2002JD003219.

    • Search Google Scholar
    • Export Citation
  • Schneider, A., M. Gerding, and F.-J. Lubken, 2015: Comparing turbulent parameters obtained from LITOS and radiosonde measurements. Atmos. Chem. Phys., 15, 21592166, doi:10.5194/acp-15-2159-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi:10.1029/2012GL051996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate report of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, doi:10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and T. Tsuda, 1997: Characteristics of Kelvin waves and gravity waves observed with radiosondes over Indonesia. J. Geophys. Res., 102, 26 15926 171, doi:10.1029/96JD03146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for global warming theory. Bull. Amer. Meteor. Soc., 78, 10971106, doi:10.1175/1520-0477(1997)078<1097:HDITTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, J., M. Fujiwara, T. Nishizawa, R. Shirooka, K. Yoneyama, M. Katsumata, I. Matsui, and N. Sugimoto, 2013: The occurrence of cirrus clouds associated with eastward propagating equatorial n = 0 inertio-gravity and Kelvin waves in November 2011 during the CINDY2011/DYNAMO campaign. J. Geophys. Res. Atmos., 118, 12 94112 947, doi:10.1002/2013JD019960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2015: Relationship between cumulus activity and environmental moisture during the CINDY2011/DYNAMO field experiment as revealed from convection-resolving simulations. J. Meteor. Soc. Japan, 93A, 4158, doi:10.2151/jmsj.2015-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. Woro, B. Hajirono, and S. Kato, 1994a: Radiosonde observations of equatorial atmospheric dynamics over Indonesia: 1. Equatorial waves and diurnal tides. J. Geophys. Res., 99, 10 49110 505, doi:10.1029/94JD00355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. Woro, B. Hajirono, and S. Kato, 1994b: Radiosonde observations of equatorial atmospheric dynamics over Indonesia: 2. Characteristics of gravity waves. J. Geophys. Res., 99, 10 50710 516, doi:10.1029/94JD00354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and P. H. Haynes, 2000: Intermittent mixing in strongly stratified fluid as a random walk. J. Fluid Mech., 411, 165185, doi:10.1017/S0022112099008149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., 2007: CIRENE 2007 cruise, RV Le Suroît. Systèmes d’Informations Scientifiques pour la Mer, doi:10.17600/7020010.

    • Crossref
    • Export Citation
  • Vialard, J., and et al. , 2009: CIRENE: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561, doi:10.1175/2008BAMS2499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season Real-time Multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., 2004: Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review. Ann. Geophys., 22, 38693887, doi:10.5194/angeo-22-3869-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., F. Dalaudier, and F. Bertin, 2005: Estimation of the turbulent fraction in the free atmosphere from MST radar measurements. J. Atmos. Oceanic Technol., 22, 13261339, doi:10.1175/JTECH1783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., H. Luce, F. Dalaudier, and J. Lefrere, 2010: Turbulence patch identification in potential density or temperature profiles. J. Atmos. Oceanic Technol., 27, 977993, doi:10.1175/2010JTECHA1357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., F. Dalaudier, and H. Luce, 2011: Can one detect small-scale turbulence from standard meteorological radiosondes? Atmos. Meas. Tech., 4, 795804, doi:10.5194/amt-4-795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., H. Luce, H. Hashiguchi, M. Shiotani, and F. Dalaudier, 2013: On the effect of moisture on the detection of tropospheric turbulence from in situ measurements. Atmos. Meas. Tech., 6, 697702, doi:10.5194/amt-6-697-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., H. Luce, H. Hashiguchi, N. Nishi, and Y. Yabuki, 2014: Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data. J. Atmos. Sol.-Terr. Phys., 118, 7889, doi:10.1016/j.jastp.2014.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodman, R. F., and P. K. Rastogi, 1984: Evaluation of effective eddy diffusive coefficients using radar observations of turbulence in the stratosphere. Geophys. Res. Lett., 11, 243246, doi:10.1029/GL011i003p00243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, R. M., 2015: MST radar observations of turbulent altocumulus layers. Atmos. Sci. Lett., 16, 500505, doi:10.1002/asl588.

  • Xu, W., and S. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, C. Schumacher, and M. Katsumata, 2015: Evolution, properties and spatial variability of MJO convection near and off the equator during DYNAMO. J. Atmos. Sci., 72, 41264147, doi:10.1175/JAS-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and et al. , 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903, doi:10.1175/2008BAMS2519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zermeño-Díaz, D. M., C. Zhang, P. Kollias, and H. Kalesse, 2015: The role of shallow cloud moistening in MJO and non-MJO convective events over the ARM Manus site. J. Atmos. Sci., 72, 47974820, doi:10.1175/JAS-D-14-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95-GHz cloud radar. J. Geophys. Res., 115, D00K30, doi:10.1029/2010JD014030.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 24
PDF Downloads 77 77 10

Tropospheric Turbulence over the Tropical Open Ocean: Role of Gravity Waves

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • | 2 Laboratoire Atmosphere, Milieux, Observations Spatiales, Paris, France
  • | 3 Lower Atmosphere Research Group, Merritt Island, Florida
  • | 4 Laboratoire de Météorologie Dynamique, Paris, France
  • | 5 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

A large set of soundings obtained in the Indian Ocean during three field campaigns is used to provide statistical characteristics of tropospheric turbulence and its link with gravity wave (GW) activity. The Thorpe method is used to diagnose turbulent regions of a few hundred meters depth. Above the mixed layer, turbulence frequency varies from ~10% in the lower troposphere up to ~30% around 12-km height. GWs are captured by their signature in horizontal wind, normalized temperature, and balloon vertical ascent rate. These parameters emphasize different parts of the wave spectrum from longer to shorter vertical wavelengths. Composites are constructed in order to reveal the vertical structure of the waves and their link with turbulence. The relatively longer-wavelength GWs described by their signature in temperature (GWTs) are more active in the lower troposphere, where they are associated with clear variations in moisture. Turbulence is then associated with minimum static stability and vertical shear, stressing the importance of the former and the possibility of convective instability. Conversely, the short waves described by their signature in balloon ascent rate (GWws) are detected primarily in the upper troposphere, and their turbulence is associated with a vertical shear maximum, suggesting the importance of dynamic instability. Furthermore, GWws appear to be linked with local convection, whereas GWTs are more active in suppressed and dry phases in particular of the Madden–Julian oscillation. These waves may be associated with remote sources, such as organized convection or local fronts, such as those associated with dry-air intrusions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hugo Bellenger, hbellenger@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

A large set of soundings obtained in the Indian Ocean during three field campaigns is used to provide statistical characteristics of tropospheric turbulence and its link with gravity wave (GW) activity. The Thorpe method is used to diagnose turbulent regions of a few hundred meters depth. Above the mixed layer, turbulence frequency varies from ~10% in the lower troposphere up to ~30% around 12-km height. GWs are captured by their signature in horizontal wind, normalized temperature, and balloon vertical ascent rate. These parameters emphasize different parts of the wave spectrum from longer to shorter vertical wavelengths. Composites are constructed in order to reveal the vertical structure of the waves and their link with turbulence. The relatively longer-wavelength GWs described by their signature in temperature (GWTs) are more active in the lower troposphere, where they are associated with clear variations in moisture. Turbulence is then associated with minimum static stability and vertical shear, stressing the importance of the former and the possibility of convective instability. Conversely, the short waves described by their signature in balloon ascent rate (GWws) are detected primarily in the upper troposphere, and their turbulence is associated with a vertical shear maximum, suggesting the importance of dynamic instability. Furthermore, GWws appear to be linked with local convection, whereas GWTs are more active in suppressed and dry phases in particular of the Madden–Julian oscillation. These waves may be associated with remote sources, such as organized convection or local fronts, such as those associated with dry-air intrusions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hugo Bellenger, hbellenger@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save