• Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, doi:10.1127/0941-2948/2012/0319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., and E. Lindborg, 2008: Passive scalars in stratified turbulence. Geophys. Res. Lett., 35, L06809, doi:10.1029/2007GL032906.

  • Calif, R., and F. G. Schmitt, 2012: Modeling of atmospheric wind speed sequence using a lognormal continuous stochastic equation. J. Wind Eng. Ind. Aerodyn., 109, 18, doi:10.1016/j.jweia.2012.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and et al. , 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the pacific exploratory missions: 1. Climatology. J. Geophys. Res., 104, 56975716, doi:10.1029/98JD01825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and G. W. Sachse, 2000: Anomalous scaling of mesoscale tropospheric humidity fluctuations. Geophys. Res. Lett., 27, 377380, doi:10.1029/1999GL010846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and R. Kershaw, 1999: Estimating the subgrid variance of saturation, and its parameterization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 30573076, doi:10.1002/qj.49712556013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, X., and Y.-H. Kuo, 2015: A new generic method for quantifying the scale predictability of the fractal atmosphere: Applications to model verification. J. Atmos. Sci., 72, 16671688, doi:10.1175/JAS-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., C. Kiemle, and G. C. Craig, 2012: Height-resolved variability of midlatitude tropospheric water vapor measured by airborne lidar. Geophys. Res. Lett., 39, L06803, doi:10.1029/2011GL050621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., G. C. Craig, and C. Kiemle, 2013: Horizontal structure function and vertical correlation analysis of mesoscale water vapor variability observed by airborne lidar. J. Geophys. Res. Atmos., 118, 75797590, doi:10.1002/jgrd.50588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and J. Teixeira, 2009: A global climatology of temperature and water vapor variance scaling from the atmospheric infrared sounder. J. Climate, 22, 55585576, doi:10.1175/2009JCLI2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, doi:10.1175/2011JAS3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, G. M., P. H. Austin, and M. Szczodrak, 2004: Spatial statistics of marine boundary layer clouds. J. Geophys. Res., 109, D04104, doi:10.129/2003JD003742.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., A. Tuck, and D. Schertzer, 2010: Horizontal cascade structure of atmospheric fields determined from aircraft data. J. Geophys. Res., 115, D13105, doi:10.1029/2009JD013353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54, 14231444, doi:10.1175/1520-0469(1997)054<1423:SIILWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., W. H. Jasperson, and K. S. Gage, 1986: Horizontal spectra of atmospheric tracers measured during the global atmospheric sampling program. J. Geophys. Res., 91, 13 20113 209, doi:10.1029/JD091iD12p13201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1996: Anomalous scaling of high cloud variability in the tropical Pacific. Geophys. Res. Lett., 23, 10951098, doi:10.1029/96GL01121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., and W. D. Collins, 2012: First-order structure function analysis of statistical scale invariance in the AIRS-observed water vapor field. J. Climate, 25, 55385555, doi:10.1175/JCLI-D-11-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., W. D. Collins, and A. R. Desai, 2010: Variance scaling in water vapor measurements from a tall tower. 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., P1.77. [Available online at https://ams.confex.com/ams/13CldPhy13AtRad/webprogram/Paper171839.html.]

  • Pressel, K. G., W. D. Collins, and A. R. Desai, 2014: The spatial scale dependence of water vapor variability inferred from observations from a very tall tower. J. Geophys. Res. Atmos., 119, 98229837, doi:10.1002/2013JD021141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemann, V., B. Stevens, V. Grtzun, and J. Quaas, 2013: Scale dependency of total water variance, and its implication for cloud parameterizations. J. Atmos. Sci., 70, 36153630, doi:10.1175/JAS-D-13-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selz, T., and G. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813827, doi:10.1175/MWR-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shraiman, B. I., and E. D. Siggia, 2000: Scalar turbulence. Nature, 405, 639646, doi:10.1038/35015000.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Stevens, B., and S. Bony, 2013a: Water in the atmosphere. Phys. Today, 66, 2934, doi:10.1063/PT.3.2009.

  • Stevens, B., and S. Bony, 2013b: What are climate models missing? Science, 340, 10531054, doi:10.1126/science.1237554.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjemkes, S., and M. Visser, 1994: Horizontal variability of temperature, specific humidity, and cloud liquid water as derived from spaceborne observations. J. Geophys. Res., 99, 23 08923 105, doi:10.1029/94JD01718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuck, A. F., S. J. Hovde, E. C. Richard, D. W. Fahey, R. S. Gao, and T. P. Bui, 2003: A scaling analysis of ER-2 data in the inner vortex during January–March 2000. J. Geophys. Res., 107, 8306, doi:10.1029/2001JD000879.

    • Search Google Scholar
    • Export Citation
  • Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362, doi:10.5194/acp-10-6347-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokohata, T., S. Emori, T. Nozawa, Y. Tsushima, T. Ogura, and M. Kimoto, 2005: Climate response to volcanic forcing: Validation of climate sensitivity of a coupled atmosphere–ocean general circulation model. Geophys. Res. Lett., 32, L21710, doi:10.1029/2005GL023542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., 2013: Cloud–climate feedback: How much do we know? Observation, Theory and Modeling of Atmospheric Variability, X. Zhu et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 3, World Scientific Publishing Co., 161–183.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 3
PDF Downloads 25 25 1

Structure Function Analysis of Water Vapor Simulated with a Convection-Permitting Model and Comparison to Airborne Lidar Observations

View More View Less
  • 1 Meteorologisches Institut, Ludwig-Maximilians-Universität München, München, Germany
© Get Permissions
Restricted access

Abstract

The spatial scale dependence of midlatitude water vapor variability in the high-resolution limited-area model COSMO is evaluated using diagnostics of scaling behavior. Past analysis of airborne lidar measurements showed that structure function scaling exponents depend on the corresponding airmass characteristics, and that a classification of the troposphere into convective and nonconvective layers led to significantly different power-law behaviors for each of these two regimes. In particular, scaling properties in the convective air mass were characterized by rough and highly intermittent data series, whereas the nonconvective regime was dominated by smoother structures with weaker small-scale variability. This study finds similar results in a model simulation with an even more pronounced distinction between the two air masses. Quantitative scaling diagnostics agree well with measurements in the nonconvective air mass, whereas in the convective air mass the simulation shows a much higher intermittency. Sensitivity analyses were performed using the model data to assess the impact of limitations of the observational dataset, which indicate that analyses of lidar data most likely underestimated the intermittency in convective air masses due to the small samples from single flight tracks, which led to a bias when data with poor fits were rejected. Though the quantitative estimation of intermittency remains uncertain for convective air masses, the ability of the model to capture the dominant weather regime dependence of water vapor scaling properties is encouraging.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tobias Selz, tobias.selz@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Abstract

The spatial scale dependence of midlatitude water vapor variability in the high-resolution limited-area model COSMO is evaluated using diagnostics of scaling behavior. Past analysis of airborne lidar measurements showed that structure function scaling exponents depend on the corresponding airmass characteristics, and that a classification of the troposphere into convective and nonconvective layers led to significantly different power-law behaviors for each of these two regimes. In particular, scaling properties in the convective air mass were characterized by rough and highly intermittent data series, whereas the nonconvective regime was dominated by smoother structures with weaker small-scale variability. This study finds similar results in a model simulation with an even more pronounced distinction between the two air masses. Quantitative scaling diagnostics agree well with measurements in the nonconvective air mass, whereas in the convective air mass the simulation shows a much higher intermittency. Sensitivity analyses were performed using the model data to assess the impact of limitations of the observational dataset, which indicate that analyses of lidar data most likely underestimated the intermittency in convective air masses due to the small samples from single flight tracks, which led to a bias when data with poor fits were rejected. Though the quantitative estimation of intermittency remains uncertain for convective air masses, the ability of the model to capture the dominant weather regime dependence of water vapor scaling properties is encouraging.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tobias Selz, tobias.selz@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Save