• Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1046 pp.

  • Acevedo, O. C., F. D. Costa, and G. A. Degrazia, 2012: The coupling state of an idealized stable boundary layer. Bound.-Layer Meteor., 145, 211228, doi:10.1007/s10546-011-9676-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiros, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, doi:10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansorge, C., and J. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van de Brink, and A. A. M. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J.-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473500, doi:10.1007/s10546-005-9036-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, B. J. H. van de Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys, 56, 8899, doi:10.2478/s11600-007-0038-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., 2001: Rainfall-Runoff Modeling: The Primer. Wiley, 372 pp.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., P. Baas, E. M. van Meijgaard, E. I. F. de Bruijn, G. J. Steeneveld, and A. A. M. Holtslag, 2014a: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part A: Case selection and set-up. Bound.-Layer Meteor., 152, 133156, doi:10.1007/s10546-014-9917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and et al. , 2014b: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, doi:10.1007/s10546-014-9919-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., P. A. Bartlett, and J. H. McCaughey, 2002: Study of ‘soft’ night-time surface-layer decoupling over forest canopies in a land-surface model. Bound.-Layer Meteor., 103, 253276, doi:10.1023/A:1017443021557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999a: Stable boundary layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446, doi:10.1023/A:1001749007836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999b: Boundary-layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90, 297325, doi:10.1023/A:1001710014316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donda, J. M. M., I. G. S. Van Hooijdonk, A. F. Moene, G. J. F. Van Heijst, H. J. H. Clercx, and B. J. H. Van de Wiel, 2015: Collapse of turbulence in a stably stratified channel flow: A transient phenomenon. Quart. J. Roy. Meteor. Soc., 141, 21372147, doi:10.1002/qj.2511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donda, J. M. M., I. G. S. Van Hooijdonk, A. F. Moene, G. J. F. Van Heijst, H. J. H. Clercx, and B. J. H. Van de Wiel, 2016: The maximum sustainable heat flux in stably stratified channel flows. Quart. J. Roy. Meteor. Soc., 142, 781792, doi:10.1002/qj.2680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1999: Turbulence, radiation and fog in Dutch stable boundary layer. Bound.-Layer Meteor., 90, 447477, doi:10.1023/A:1026441904734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Bound.-Layer Meteor., 131, 127146, doi:10.1007/s10546-009-9363-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, D. E., and R. T. McNider, 1995: Stability functions based upon shear functions. Bound.-Layer Meteor., 74, 113130, doi:10.1007/BF00715713.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, O., and J. J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259, doi:10.1007/s10546-011-9588-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., and et al. , 2015: Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos. Chem. Phys., 15, 62256236, doi:10.5194/acp-15-6225-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., M. S. Town, D. Six, V. Favier, S. Argentini, and A. Pellegrini, 2010: Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J. Geophys. Res., 115, D05104, doi:10.1029/2009JD012741.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., D. Six, H. Gallée, P. Grigioni, and A. Pellegrini, 2013: Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau. J. Geophys. Res. Atmos., 118, 32183232, doi:10.1002/jgrd.50128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. A., E. Fedorovich, and A. Shapiro, 2015: Revisiting surface heat-flux and temperature boundary conditions in models of stably stratified boundary-layer flows. Bound.-Layer Meteor., 154, 171187, doi:10.1007/s10546-014-9970-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A., C. Fairall, P. Persson, E. Andreas, and P. Guest, 2005: Stable boundary-layer regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B. G., A. F. G. Jacobs, A. A. M. Holtslag, and S. M. Berkowicz, 2004: Surface energy balance closure in an arid region: Role of soil and heat flux. Agric. For. Meteor., 122, 2137, doi:10.1016/j.agrformet.2003.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246, doi:10.1007/BF00120937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdsworth, A. M., T. Rees, and A. H. Monahan, 2016: Parameterization sensitivity and instability characteristics of the maximum sustainable heat flux framework for predicting turbulent collapse. J. Atmos. Sci., 73, 35273540, doi:10.1175/JAS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and H. A. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704, doi:10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G.-J. Steeneveld, and B. J. H. van de Wiel, 2007: Role of land-surface temperature feedback on model performance for the stable boundary layer. Bound.-Layer Meteor., 125, 361376, doi:10.1007/s10546-007-9214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and et al. , 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and E. Bou-Zeid, 2013: Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: A large-eddy simulation study. J. Atmos. Sci., 70, 15131527, doi:10.1175/JAS-D-12-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and A. A. M. Holtslag, 2004: An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 130, 34053427, doi:10.1256/qj.03.117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

  • Mackaro, S., R. McNider, and A. Pour-Biazar, 2012: Some physical and computational issues in land surface data assimilation of satellite skin temperatures. Pure Appl. Geophys., 169, 401414, doi:10.1007/s00024-011-0377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary layer regimes. Bound.-Layer Meteor., 88, 255278, doi:10.1023/A:1001171313493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396, doi:10.1007/BF00712379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614, doi:10.1175/1520-0469(1995)052<1602:POTSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and et al. , 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, D14106, doi:10.1029/2012JD017578.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., T. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, doi:10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, 127, doi:10.1002/qj.49710745102.

  • Morcrette, J.-J., 1991: Radiation and cloud radiation properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96, 91219132, doi:10.1029/89JD01597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299, doi:10.1007/s10546-004-2818-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and et al. , 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roman-Cascon, C., G. J. Steeneveld, C. Yague, M. Sastre, J. A. Arrillaga, and G. Maqueda, 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 10481063, doi:10.1002/qj.2708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., R. T. McNider, D. E. England, M. J. Friedman, W. Lapenta, and W. B. Norris, 2005: On the behavior of the stable boundary layer and role of initial conditions. Pure Appl. Geophys., 162, 18111829, doi:10.1007/s00024-005-2694-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 15261537, doi:10.1175/JAS3704.1.

  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935, doi:10.1175/JAS3654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolaki, S., I. Pytharoulis, and T. Karacostas, 2012: A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki Airport, Greece. Pure Appl. Geophys., 169, 961981, doi:10.1007/s00024-011-0393-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. Weil, E. G. Patton, H. J. H. Jonker, and D. Mironov, 2016: Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci., 73, 18151840, doi:10.1175/JAS-D-15-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. Banta, and Y. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., 1971: A note on the log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329, doi:10.1002/qj.49709741308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103, 633653, doi:10.1002/qj.49710343809.

  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow, Turbul. Combust., 79, 251274, doi:10.1007/s10494-007-9094-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012a: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012b: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, doi:10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hooijdonk, I. G. S., J. J. M. Donda, F. C. Bosveld, and B. J. H. Van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, doi:10.1175/JAS-D-14-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hooijdonk, I. G. S., A. F. Moene, M. Scheffer, H. J. H. Clercx, and B. J. H. Van de Wiel, 2017: Early warning signals for regime transition in the stable boundary layer: A model study. Bound.-Layer Meteor., 162, 283306, doi:10.1007/s10546-016-0199-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignon, E., C. Genthon, H. Barral, C. Amory, G. Picard, H. Gallée, G. Casasanta, and S. Argentini, 2017a: Momentum- and heat-flux parametrization at Dome C, Antarctica: A sensitivity study. Bound.-Layer Meteor., 162, 341367, doi:10.1007/s10546-016-0192-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignon, E., and et al. , 2017b: Stable boundary layer regimes at Dome C: Antarctica. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2998, in press.

  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, doi:10.1029/2005GL024379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, J. T., R. T. McNider, X. Shi, and W. B. Norris, 2007: Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys. Res. Lett., 34, L12709, doi:10.1029/2007GL029505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1989: Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Layer Meteor., 47, 85110, doi:10.1007/BF00122324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

    • Crossref
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulent energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 21
PDF Downloads 130 130 15

Regime Transitions in Near-Surface Temperature Inversions: A Conceptual Model

View More View Less
  • 1 Faculty of Civil Engineering and Geosciences, Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
  • | 2 CNRS/Université Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France
  • | 3 CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France
  • | 4 Fluid Dynamics Laboratory, and J.M. Burgerscentrum, Eindhoven University of Technology, Eindhoven, Netherlands
  • | 5 Royal Netherlands Weather Institute, De Bilt, Netherlands
  • | 6 Wageningen University and Research Centre, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.

Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.

Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bas J. H. Van de Wiel, b.j.h.vandewiel@tudelft.nl

Abstract

A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.

Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.

Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bas J. H. Van de Wiel, b.j.h.vandewiel@tudelft.nl
Save