On the Formulation and Universality of Monin–Obukhov Similarity Functions for Mean Gradients and Standard Deviations in the Unstable Surface Layer: Results from Surface-Layer-Resolving Large-Eddy Simulations

Björn Maronga Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover, Hannover, Germany

Search for other papers by Björn Maronga in
Current site
Google Scholar
PubMed
Close
and
Joachim Reuder Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Joachim Reuder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface-layer-resolving large-eddy simulations (LESs) of free-convective to near-neutral boundary layers are used to study Monin–Obukhov similarity theory (MOST) functions. The LES dataset, previously used for the analysis of MOST relationships for structure parameters, is extended for the mean vertical gradients and standard deviations of potential temperature, specific humidity, and wind. Also, local-free-convection (LFC) similarity is studied. The LES data suggest that the MOST functions for mean gradients are universal and unique. The data for the mean gradient of the horizontal wind display significant scatter, while the gradients of temperature and humidity vary considerably less. The LES results suggest that this scatter is mostly related to a transition from MOST to LFC scaling when approaching free-convective conditions and that it is associated with a change of the slope of the similarity functions toward the expected value from LFC scaling. Overall, the data show slightly, but consistent, steeper slopes of the similarity functions than suggested in literature. The MOST functions for standard deviations appear to be unique and universal when the entrainment from the free atmosphere into the boundary layer is sufficiently small. If entrainment becomes significant, however, we find that the standard deviation of humidity no longer follows MOST. Under free-convective conditions, the similarity functions should reduce to universal constants (LFC scaling). This is supported by the LES data, showing only little scatter, but displaying a systematic height dependence of these constants. Like for MOST, the LFC similarity constant for the standard deviation of specific humidity becomes nonuniversal when the entrainment of dry air reaches significant levels.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Björn Maronga, maronga@muk.uni-hannover.de

Abstract

Surface-layer-resolving large-eddy simulations (LESs) of free-convective to near-neutral boundary layers are used to study Monin–Obukhov similarity theory (MOST) functions. The LES dataset, previously used for the analysis of MOST relationships for structure parameters, is extended for the mean vertical gradients and standard deviations of potential temperature, specific humidity, and wind. Also, local-free-convection (LFC) similarity is studied. The LES data suggest that the MOST functions for mean gradients are universal and unique. The data for the mean gradient of the horizontal wind display significant scatter, while the gradients of temperature and humidity vary considerably less. The LES results suggest that this scatter is mostly related to a transition from MOST to LFC scaling when approaching free-convective conditions and that it is associated with a change of the slope of the similarity functions toward the expected value from LFC scaling. Overall, the data show slightly, but consistent, steeper slopes of the similarity functions than suggested in literature. The MOST functions for standard deviations appear to be unique and universal when the entrainment from the free atmosphere into the boundary layer is sufficiently small. If entrainment becomes significant, however, we find that the standard deviation of humidity no longer follows MOST. Under free-convective conditions, the similarity functions should reduce to universal constants (LFC scaling). This is supported by the LES data, showing only little scatter, but displaying a systematic height dependence of these constants. Like for MOST, the LFC similarity constant for the standard deviation of specific humidity becomes nonuniversal when the entrainment of dry air reaches significant levels.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Björn Maronga, maronga@muk.uni-hannover.de
Save
  • Andreas, E. L, 1988: Estimating over snow and sea ice from meteorological data. J. Opt. Soc. Amer., 5, 481495, doi:10.1364/JOSAA.5.000481.

  • Andreas, E. L, 1991: Using scintillation at two wavelengths to measure path-averaged heat fluxes in free convection. Bound.-Layer Meteor., 54, 167182, doi:10.1007/BF00119418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and B. B. Hicks, 2002: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.” J. Atmos. Sci., 59, 26052607, doi:10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, R. J. Hill, J. R. Gosz, D. I. Moore, W. D. Otto, and A. D. Sarma, 1998: Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Bound.-Layer Meteor., 86, 379408, doi:10.1023/A:1000609131683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andren, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484, doi:10.1002/qj.49712052003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., R. D. Kouznetsov, J.-P. Leps, A. Lüdi, W. M. L. Meijninger, and U. Weisensee, 2005: Structure parameters for temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteor. Z., 14, 641649, doi:10.1127/0941-2948/2005/0064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1997: Turbulence and Diffusion in the Atmosphere. Springer, 185 pp.

    • Crossref
    • Export Citation
  • Braam, M., A. F. Moene, F. Beyrich, and A. A. M. Holtslag, 2014: Similarity relations for in the unstable atmospheric surface layer: Dependence on regression approach, observation height and stability range. Bound.-Layer Meteor., 153, 6387, doi:10.1007/s10546-014-9938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1973: A note on free convection. Bound.-Layer Meteor., 4, 323326, doi:10.1007/BF02265241.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carl, D. M., T. C. Tarbell, and H. A. Panofsky, 1973: Profiles of wind and temperature from towers over homogeneous terrain. J. Atmos. Sci., 30, 788794, doi:10.1175/1520-0469(1973)030<0788:POWATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and C. J. Readings, 1975: Turbulent fluctuations in convective conditions. Quart. J. Roy. Meteor. Soc., 101, 537542, doi:10.1002/qj.49710142910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, D., and G. Matheou, 2012: Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech., 696, 434467, doi:10.1017/jfm.2012.59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Arellano, J., B. Gioli, F. Miglietta, H. J. J. Jonker, H. K. Baltink, R. W. A. Hutjes, and A. A. M. Holtslag, 2004: Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res., 109, D18110, doi:10.1029/2004JD004725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delage, Y., and C. Girard, 1992: Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound.-Layer Meteor., 58, 1931, doi:10.1007/BF00120749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, doi:10.1007/BF00240838.

  • Dyer, A. J., and E. F. Bradley, 1982: An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound.-Layer Meteor., 22, 319, doi:10.1007/BF00128053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. G., D. D. McNeil, J. W. Finch, T. Murray, R. J. Harding, H. C. Ward, and A. Verhoef, 2012: Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric. For. Meteor., 166–167, 221233, doi:10.1016/j.agrformet.2012.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, doi:10.1007/s10546-006-9048-6.

  • Hartogensis, O. K., and H. A. R. De Bruin, 2005: Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Bound.-Layer Meteor., 116, 253276, doi:10.1007/s10546-004-2817-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1989: Implications of Monin–Obukhov similarity theory for scalar quantities. J. Atmos. Sci., 46, 22362244, doi:10.1175/1520-0469(1989)046<2236:IOMSTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteor., 42, 5578, doi:10.1007/BF00119875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246, doi:10.1007/BF00120937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., X. Lee, and E. G. Patton, 2009: Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Bound.-Layer Meteor., 130, 327345, doi:10.1007/s10546-009-9356-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, C., A.-S. Smedman, U. Högström, J. G. Brasseur, and S. Khanna, 2001: Critical test of the validity of Monin–Obukhov similarity during convective conditions. J. Atmos. Sci., 58, 15491566, doi:10.1175/1520-0469(2001)058<1549:CTOTVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, C., A.-S. Smedman, U. Högström, and J. G. Brasseur, 2002: Reply. J. Atmos. Sci., 59, 26082614, doi:10.1175/1520-0469(2002)059<2608:R>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637662, doi:10.1017/S0022112090002129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1988: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kaimal, J. C., and J. C. Wyngaard, 1990: The Kansas and Minnesota experiments. Bound.-Layer Meteor., 50, 3147, doi:10.1007/BF00120517.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., D. Li, M. Chamecki, and E. Bou-Zeid, 2013: Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer. Phys. Rev., 87E, 023004, doi:10.1103/PhysRevE.87.023004.

    • Search Google Scholar
    • Export Citation
  • Kays, W., 1994: Turbulent Prandtl number—Where are we? J. Heat Transfer, 116, 284295, doi:10.1115/1.2911398.

  • Khanna, S., and J. G. Brasseur, 1997: Analysis of Monin–Obukhov similarity from large-eddy simulations. J. Fluid Mech., 345, 251286, doi:10.1017/S0022112097006277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., W. M. L. Meijninger, A. F. Moene, B. G. Heusinkveld, O. K. Hartogensis, W. C. A. M. Hillen, and H. A. R. De Bruin, 2002: An extra large aperture scintillometer for long range applications. Bound.-Layer Meteor., 105, 119127, doi:10.1023/A:1019600908144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooijmans, L., and O. K. Hartogensis, 2016: Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Bound.-Layer Meteor., 160, 501527, doi:10.1007/s10546-016-0152-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., M. Krane, and S. Raasch, 2008: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ., 42, 87708784, doi:10.1016/j.atmosenv.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, and H. A. R. De Bruin, 2012a: Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Bound.-Layer Meteor., 145, 4567, doi:10.1007/s10546-011-9660-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., G. G. Katul, and E. Bou-Zeid, 2012b: Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys. Fluids, 24, 105105, doi:10.1063/1.4757660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., G. G. Katul, and S. S. Zilitinkevich, 2015: Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. J. Atmos. Sci., 72, 23942410, doi:10.1175/JAS-D-14-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., O. Tuskamoto, T. Oikawa, and E. Ohtaki, 1998: A study of correlations of scalar quantities in the atmospheric surface layer. Bound.-Layer Meteor., 87, 499508, doi:10.1023/A:1000947709324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., 2014: Monin–Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: Results from high-resolution large-eddy simulations. J. Atmos. Sci., 71, 716733, doi:10.1175/JAS-D-13-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., A. F. Moene, D. van Dinther, S. Raasch, F. C. Bosveld, and B. Gioli, 2013: Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations. Bound.-Layer Meteor., 148, 130, doi:10.1007/s10546-013-9801-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., O. K. Hartogensis, S. Raasch, and F. Beyrich, 2014: The effect of surface heterogeneity on the structure parameters of temperature and specific humidity: A large-eddy simulation case study for the LITFASS-2003 experiment. Bound.-Layer Meteor., 153, 441470, doi:10.1007/s10546-014-9955-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, doi:10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, K., 2006: On the kinematic energy budget of the unstable atmospheric surface layer. Bound.-Layer Meteor., 118, 83189, doi:10.1007/s10546-005-3779-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijninger, W. M. L., F. Beyrich, A. Lüdi, W. Kohsiek, and H. A. R. De Bruin, 2006: Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—A contribution to LITFASS-2003. Bound.-Layer Meteor., 121, 89110, doi:10.1007/s10546-005-9022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., and P. P. Sullivan, 2016: Second-moment budgets and mixing intensity in the stably stratified atmospheric boundary layer over thermally heterogeneous surfaces. J. Atmos. Sci., 73, 449464, doi:10.1175/JAS-D-15-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geofiz. Inst., 24, 163187.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2013: The NCAR Command Language (version 6.1.2). UCAR/NCAR/CISL/VETS, doi:10.5065/D6WD3XH5.

    • Crossref
    • Export Citation
  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Bound.-Layer Meteor., 2, 729, doi:10.1007/BF00718085.

  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons, 397 pp.

  • Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355361, doi:10.1007/BF02186086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, doi:10.1175/JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, L. J., and J. C. Wyngaard, 1995: Structure–function parameters in the convective boundary layer from large-eddy simulation. J. Atmos. Sci., 52, 36413660, doi:10.1175/1520-0469(1995)052<3641:SPITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, doi:10.1127/0941-2948/2001/0010-0363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and T. Franke, 2011: Structure and formation of dust devil–like vortices in the atmospheric boundary layer: A high-resolution numerical study. J. Geophys. Res., 116, D16120, doi:10.1029/2011JD016010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C.-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95, 130, doi:10.1023/A:1002428223156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1988: Minimum friction velocity and heat transfer in the rough surface layer of a convective boundary layer. Bound.-Layer Meteor., 44, 311326, doi:10.1007/BF00123019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and J. M. Hacker, 1990: Local similarity relationships in a horizontally inhomogeneous boundary layer. Bound.-Layer Meteor., 52, 1740, doi:10.1007/BF00123176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1986: On similarity in the atmospheric boundary layer. Bound.-Layer Meteor., 34, 377397, doi:10.1007/BF00120989.

  • Steeneveld, G. J., A. A. M. Holtslag, and H. A. R. DeBruin, 2005: Fluxes and gradients in the convective surface layer and the possible role of boundary-layer depth and entrainment flux. Bound.-Layer Meteor., 116, 237252, doi:10.1007/s10546-004-2730-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, W. H. De Ronde, and H. J. J. Jonker, 2008: Local similarity in the stable boundary layer and mixing-length approaches: Consistency of concepts. Bound.-Layer Meteor., 128, 103116, doi:10.1007/s10546-008-9277-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, J. H., 1980: Low-storage Runge-Kutta schemes. J. Comput. Phys., 35, 4856, doi:10.1016/0021-9991(80)90033-9.

  • Wilson, D. K., 2001: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.-Layer Meteor., 99, 151158, doi:10.1023/A:1018718707419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2008: Monin-Obukhov functions for standard deviations. Bound.-Layer Meteor., 129, 353369, doi:10.1007/s10546-008-9319-5.

  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 11711182, doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 856 207 12
PDF Downloads 798 165 15