• Albers, J. R., G. N. Kiladis, T. Birner, and J. Dias, 2016: Tropical upper-tropospheric potential vorticity intrusions during sudden stratospheric warmings. J. Atmos. Sci., 73, 23612384, doi:10.1175/JAS-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and et al. , 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Collimore, C. C., M. H. Hitchman, and D. W. Martin, 1998: Is there a quasi-biennial oscillation in tropical deep convection? Geophys. Res. Lett., 25, 333336, doi:10.1029/97GL03722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, doi:10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, N., and K. Kodera, 2010: Impacts of stratospheric sudden warming event on tropical clouds and moisture fields in the TTL: A case study. SOLA, 6, 137140, doi:10.2151/sola.2010-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, doi:10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041, doi:10.1175/2011JAS3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., L. Bengtsson, and K. Arpe, 1999: An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Climate Dyn., 15, 435450, doi:10.1007/s003820050292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and J. A. Knaff, 1992: Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophys. Res. Lett., 19, 107110, doi:10.1029/91GL02950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., and A. F. Krueger, 1984: The status of the NOAA outgoing longwave radiation data set. Bull. Amer. Meteor. Soc., 65, 958962, doi:10.1175/1520-0477(1984)065<0958:TSOTNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

  • Hu, Z.-Z. Z., B. Huang, J. L. Kinter, Z. Wu, and A. Kumar, 2012: Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: Interdecadal variations. Climate Dyn., 38, 2543, doi:10.1007/s00382-011-1073-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, J. L. Kinter III, Z. Wu, and A. Kumar, 2012: Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Climate Dyn., 38, 123, doi:10.1007/s00382-011-1250-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, and Y. Kuroda, 2011: A general circulation model study of the impact of a stratospheric sudden warming event on tropical convection. SOLA, 7, 197200, doi:10.2151/sola.2011-050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuma, K.-I., 1990: A quasi-biennial oscillation in the intensity of the intra-seasonal oscillation. Int. J. Climatol., 10, 263278, doi:10.1002/joc.3370100304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, doi:10.1029/2011JD016317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., B. Tian, K.-F. Li, G. L. Manney, N. J. Livesey, Y. L. Yung, and D. E. Waliser, 2014: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation. J. Geophys. Res. Atmos., 119, 12 59912 620, doi:10.1002/2014JD021876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38, 27892796, doi:10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 36253638, doi:10.1175/JAS-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and M. Shiotani, 2012: Seasonal and interannual variability in the temperature structure around the tropical tropopause and its relationship with convective activities. J. Geophys. Res., 117, D02104, doi:10.1029/2011JD016936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and M. Shiotani, 2013: Intraseasonal variations in the tropical tropopause temperature revealed by cluster analysis of convective activity. J. Geophys. Res. Atmos., 118, 35453556, doi:10.1002/jgrd.50281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., S. Yoden, and H.-H. Bui, 2016: Vertical momentum transports associated with moist convection and gravity waves in a minimal model of QBO-like oscillation. J. Atmos. Sci., 73, 29352957, doi:10.1175/JAS-D-15-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, A. R., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, doi:10.1002/qj.49710845604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., S. Lee, and S.-W. Son, 2008: Vertically propagating Kelvin waves and tropical tropopause variability. J. Atmos. Sci., 65, 18171837, doi:10.1175/2007JAS2466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of Madden–Julian oscillation. J. Climate, 30, 19091922, doi:10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., M. Taguchi, and Y. Naito, 2002: Numerical studies on time variations of the troposphere-stratosphere coupled system. J. Meteor. Soc. Japan, 80, 811830, doi:10.2151/jmsj.80.811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., H.-H. Bui, and E. Nishimoto, 2014: A minimal model of QBO-like oscillation in a stratosphere-troposphere coupled system under a radiative-moist convective quasi-equilibrium state. SOLA, 10, 112116, doi:10.2151/sola.2014-023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, doi:10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 151 20
PDF Downloads 107 107 17

Influence of the Stratospheric Quasi-Biennial Oscillation on the Madden–Julian Oscillation during Austral Summer

View More View Less
  • 1 Department of Geophysics, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Influence of the stratospheric quasi-biennial oscillation (QBO) on the Madden–Julian oscillation (MJO) and its statistical significance are examined for austral summer (DJF) in neutral ENSO events during 1979–2013. The amplitude of the OLR-based MJO index (OMI) is typically larger in the easterly phase of the QBO at 50 hPa (E-QBO phase) than in the westerly (W-QBO) phase. Daily composite analyses are performed by focusing on phase 4 of the OMI, when the active convective system is located over the eastern Indian Ocean through the Maritime Continent. The composite OLR anomaly shows a larger negative value and slower eastward propagation with a prolonged period of active convection in the E-QBO phase than in the W-QBO phase. Statistically significant differences of the MJO activities between the QBO phases also exist with dynamical consistency in the divergence of horizontal wind, the vertical wind, the moisture, the precipitation, and the 100-hPa temperature. A conditional sampling analysis is also performed by focusing on the most active convective region for each day, irrespective of the MJO amplitude and phase. Composite vertical profiles of the conditionally sampled data over the most active convective region reveal lower temperature and static stability around the tropopause in the E-QBO phase than in the W-QBO phase, which indicates more favorable conditions for developing deep convection. This feature is more prominent and extends into lower levels in the upper troposphere over the most active convective region than other tropical regions. Composite longitude–height sections show similar features of the large-scale convective system associated with the MJO, including a vertically propagating Kelvin response.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Eriko Nishimoto, eriko@kugi.kyoto-u.ac.jp

Abstract

Influence of the stratospheric quasi-biennial oscillation (QBO) on the Madden–Julian oscillation (MJO) and its statistical significance are examined for austral summer (DJF) in neutral ENSO events during 1979–2013. The amplitude of the OLR-based MJO index (OMI) is typically larger in the easterly phase of the QBO at 50 hPa (E-QBO phase) than in the westerly (W-QBO) phase. Daily composite analyses are performed by focusing on phase 4 of the OMI, when the active convective system is located over the eastern Indian Ocean through the Maritime Continent. The composite OLR anomaly shows a larger negative value and slower eastward propagation with a prolonged period of active convection in the E-QBO phase than in the W-QBO phase. Statistically significant differences of the MJO activities between the QBO phases also exist with dynamical consistency in the divergence of horizontal wind, the vertical wind, the moisture, the precipitation, and the 100-hPa temperature. A conditional sampling analysis is also performed by focusing on the most active convective region for each day, irrespective of the MJO amplitude and phase. Composite vertical profiles of the conditionally sampled data over the most active convective region reveal lower temperature and static stability around the tropopause in the E-QBO phase than in the W-QBO phase, which indicates more favorable conditions for developing deep convection. This feature is more prominent and extends into lower levels in the upper troposphere over the most active convective region than other tropical regions. Composite longitude–height sections show similar features of the large-scale convective system associated with the MJO, including a vertically propagating Kelvin response.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Eriko Nishimoto, eriko@kugi.kyoto-u.ac.jp
Save