• Ando, H., T. Imamura, and T. Tsuda, 2012: Vertical wavenumber spectra of gravity waves in the Martian atmosphere obtained from Mars Global Surveyor radio occultation data. J. Atmos. Sci., 69, 29062912, doi:10.1175/JAS-D-11-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 31883211, doi:10.1175/1520-0469(1988)045<3188:SSILFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., J. L. Redelsperger, and G. P. Klaasen, 1993: Mechanisms for the mesoscale organization of tropical cloud clusters in GATE phase III. Part I: Shallow cloud bases. J. Atmos. Sci., 50, 35713589, doi:10.1175/1520-0469(1993)050<3571:MFTMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, J. F., and et al. , 2009: Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res., 114, E08S92, doi:10.1029/2008JE003315.

    • Search Google Scholar
    • Export Citation
  • Briggs, G. A., W. A. Baum, and J. Barnes, 1979: Viking Orbiter imaging observations of dust in the Martian atmosphere. J. Geophys. Res., 84, 27952820, doi:10.1029/JB084iB06p02795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantor, B. A., 2007: MOC observations of the 2001 Mars planet-encircling dust storm. Icarus, 186, 6096, doi:10.1016/j.icarus.2006.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantor, B. A., P. B. James, M. Caplinger, and M. J. Wolff, 2001: Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res., 106, 23 65323 687, doi:10.1029/2000JE001310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantor, B. A., K. M. Kanak, and K. Edgett, 2006: Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res., 111, E12002, doi:10.1029/2006JE002700.

    • Search Google Scholar
    • Export Citation
  • Chlond, A., 1992: Three-dimensional simulation of cloud street development during a cold air outbreak. Bound.-Layer Meteor., 58, 161200, doi:10.1007/BF00120757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, P. R., 2002: Mars Global Surveyor: TES Data Products. NASA Planetary Data System Geosciences Node, accessed 12 August 2016. [Available online at http://pds-geosciences.wustl.edu/missions/mgs/tes-tsdr.html.]

  • Christensen, P. R., and et al. , 2001: Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res., 106, 23 82323 871, doi:10.1029/2000JE001370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clancy, R. T., B. J. Sandor, M. J. Wolff, P. R. Christensen, M. D. Smith, J. C. Pearl, B. J. Conrath, and R. J. Wilson, 2000: An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res., 105, 95539571, doi:10.1029/1999JE001089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clancy, R. T., M. J. Wolff, and P. R. Christensen, 2003: Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res., 108, 5098, doi:10.1029/2003JE002058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clancy, R. T., M. J. Wolff, B. A. Whitney, B. A. Cantor, M. D. Smith, and T. H. McConnochie, 2010: Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus, 207, 98109, doi:10.1016/j.icarus.2009.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., 1975: Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971. Icarus, 24, 3646, doi:10.1016/0019-1035(75)90156-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., J. C. Pearl, M. D. Smith, W. Maguire, P. R. Christensen, S. Dason, and M. S. Kaelberer, 2000: Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperature during aerobraking and science phasing. J. Geophys. Res., 105, 95099519, doi:10.1029/1999JE001095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., P. A. Taylor, W. Weng, and P.-Y. Li, 2009: A model of dust in the Martian lower atmosphere. J. Geophys. Res., 114, D04108, doi:10.1029/2008JD010481.

    • Search Google Scholar
    • Export Citation
  • Fenton, L. K., and R. Lorenz, 2015: Dust devil height and spacing with relation to the Martian planetary boundary layer thickness. Icarus, 260, 246262, doi:10.1016/j.icarus.2015.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, F., and et al. , 1999: Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 24 15524 176, doi:10.1029/1999JE001025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics in the middle atmosphere. Rev. Geophys., 41, 35713589, doi:10.1029/2001RG000106.

  • Fuerstenau, S. D., 2006: Solar heating of suspended particles and the dynamics of Martian dust devils. Geophys. Res. Lett., 33, L19S03, doi:10.1029/2006GL026798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gifford, F. A., 1964: A study of Martian yellow clouds that display movement. Mon. Wea. Rev., 92, 435440, doi:10.1175/1520-0493(1964)092<0435:ASOMYC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., and M. J. Belton, 1967: A discussion of Martian atmospheric dynamics. Planet. Space Sci., 15, 247256, doi:10.1016/0032-0633(67)90193-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurwell, M. A., E. A. Bergin, G. J. Melnick, and V. Tolls, 2005: Mars surface and atmospheric temperature during the 2001 global dust storm. Icarus, 175, 2331, doi:10.1016/j.icarus.2004.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzewich, S. D., A. D. Toigo, L. Kulowski, and H. Wang, 2015: Mars Orbiter Camera climatology of textured dust storms. Icarus, 258, 113, doi:10.1016/j.icarus.2015.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heavens, N. G., 2016: Reference surface reflectivity for Mars at 1064 nm and data for recalibration of MOLA passive radiometry, version 2. Mendeley data, accessed 1 November 2016, doi:10.17632/smb69k52st.2.

    • Crossref
    • Export Citation
  • Heavens, N. G., 2017: The reflectivity of Mars at 1064 nm: Derivation from Mars Orbiter Laser Altimeter data and application to climatology and meteorology. Icarus, doi:10.1016/j.icarus.2017.01.032, in press.

    • Crossref
    • Export Citation
  • Heavens, N. G., and et al. , 2011a: The vertical distribution of dust in the Martian atmosphere during northern spring and summer: Observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res., 116, E04003, doi:10.1029/2010JE003691.

    • Search Google Scholar
    • Export Citation
  • Heavens, N. G., and et al. , 2011b: Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., 116, E01007, doi:10.1029/2010JE003692.

    • Search Google Scholar
    • Export Citation
  • Heavens, N. G., M. S. Johnson, W. Abdou, D. M. Kass, A. Kleinböhl, D. J. McCleese, J. H. Shirley, and R. J. Wilson, 2014: Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. J. Geophys. Res. Planets, 119, 17481774, doi:10.1002/2014JE004619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heavens, N. G., and et al. , 2015: Extreme detached dust layers near Martian volcanoes: Evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett., 42, 37303738, doi:10.1002/2015GL064004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, S. L., R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman, 1977: Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res., 82, 45594574, doi:10.1029/JS082i028p04559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., and H. Wang, 2010: Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus, 206, 290305, doi:10.1016/j.icarus.2009.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R., 1984: The spatial and seasonal distribution of Martian clouds and some meteorological implications. J. Geophys. Res., 89, 66716688, doi:10.1029/JA089iA08p06671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R., 1995: Temperature measurements of a Martian local dust storm. J. Geophys. Res., 100, 52655275, doi:10.1029/94JE02766.

  • Kass, D. M., A. Kleinböhl, D. J. McCleese, J. T. Schofield, and M. D. Smith, 2016: Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43, 61116118, doi:10.1002/2016GL068978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., and et al. , 2009: Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res., 114, E10006, doi:10.1029/2009JE003358.

    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., J. T. Schofield, W. A. Abdou, P. G. J. Irwin, and R. J. de Kok, 2011: A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 112, 15681580, doi:10.1016/j.jqsrt.2011.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., J. T. Schofield, D. M. Kass, W. A. Abdou, and D. J. McCleese, 2015: No widespread dust in the middle atmosphere of Mars from Mars Climate Sounder observations. Icarus, 261, 118121, doi:10.1016/j.icarus.2015.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., A. J. Friedson, and J. T. Schofield, 2017: Two-dimensional radiative transfer for the retrieval of limb emission measurements in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 187, 511522, doi:10.1016/j.jqsrt.2016.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulowski, L., H. Wang, and A. D. Toigo, 2016: The seasonal and spatial distribution of textured dust storms observed by Mars Global Surveyor Mars Orbiter Camera. Adv. Space Res., 59, 715721, doi:10.1016/j.asr.2016.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and R. J. Meitin, 1984: Three examples of fair-weather mesoscale boundary-layer convection in the tropics. Mon. Wea. Rev., 112, 19851998, doi:10.1175/1520-0493(1984)112<1985:TEOFWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. R., D. P. Mulholland, P. L. Read, L. Montabone, and R. J. Wilson, 2016: The solsticial pause on Mars: 1. A planetary wave reanalysis. Icarus, 264, 456464, doi:10.1016/j.icarus.2015.08.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Määttänen, A., and et al. , 2009: A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus, 201, 504516, doi:10.1016/j.icarus.2009.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhaes, J. M., I. B. Araújo, J. C. B. da Silva, R. H. J. Grimshaw, K. Davis, and J. Pineda, 2011: Atmospheric gravity waves in the Red Sea: A new hotspot. Nonlinear Processes Geophys., 18, 7179, doi:10.5194/npg-18-71-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malin, M. C., and K. S. Edgett, 2001: Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res., 106, 23 42923 570, doi:10.1029/2000JE001455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MARCI, 2016: PDS Imaging Node: Data Archive. NASA Planetary Data System Imaging Node, accessed 24 May 2016. [Available online at http://pds-imaging.jpl.nasa.gov/data/mro/mars_reconnaissance_orbiter/marci/.]

  • Martin, L. J., and R. W. Zurek, 1993: An analysis of the history of dust activity on Mars. J. Geophys. Res., 98, 32213246, doi:10.1029/92JE02937.

  • McCleese, D. J., and et al. , 2007: Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res., 112, E05S06, doi:10.1029/2006JE002790.

    • Search Google Scholar
    • Export Citation
  • McCleese, D. J., and et al. , 2010: Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MCD, 2016: Mars climate database v5.2: The web interface. LMD du CNRS, accessed 1 November 2016. [Available online at http://www-mars.lmd.jussieu.fr/mcd_python/.]

  • MCS, 2016a: MRO MCS derived data records (DDR), version 4 (August 2015). NASA Planetary Data System Atmospheres Node, accessed 1 November 2016. [Available online at http://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/mcs.html.]

  • MCS, 2016b: MRO MCS reduced data records (RDR). NASA Planetary Data System Atmospheres Node, accessed 1 November 2016. [Available online at http://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/mcs.html.]

  • Melfi, S. H., and S. P. Palm, 2012: Estimating the orientation and spacing of midlatitude linear convective boundary layer features: Cloud streets. J. Atmos. Sci., 69, 352364, doi:10.1175/JAS-D-11-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millour, E., and et al. , 2015: The Mars Climate Database (MCD version 5.2). Extended Abstracts, European Planetary Science Congress 2015, Nantes, France, European Planetary Science Congress, P23, ESPSC2015-438. [Available online at http://meetingorganizer.copernicus.org/EPSC2015/EPSC2015-438.pdf.]

  • MOLA, 2016a: Mars Global Surveyor: MOLA PEDRs. NASA Planetary Data System Geosciences Node, accessed 8 July 2015. [Available online at http://pds-geosciences.wustl.edu/missions/mgs/pedr.html.]

  • MOLA, 2016b: Mars Global Surveyor: MOLA PRDRs. NASA Planetary Data System Geosciences Node, accessed 8 July 2015. [Available online at http://pds-geosciences.wustl.edu/missions/mgs/prdr.html.]

  • Montabone, L., and et al. , 2015: Eight-year climatology of dust optical depth on Mars. Icarus, 251, 6595, doi:10.1016/j.icarus.2014.12.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., S. R. Lewis, P. L. Read, J. B. M. Madeleine, and F. Forget, 2016: The solsticial pause on Mars: 2. Modelling and investigation of causes. Icarus, 264, 465477, doi:10.1016/j.icarus.2015.08.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, G. A., D. E. Smith, and M. T. Zuber, 2003: Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J. Geophys. Res., 108, 5023, doi:10.1029/2002JE001849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ockert-Bell, M. E., J. F. I. Bell, J. B. Pollack, C. P. McKay, and F. Forget, 1997: Absorption and scattering properties of the Martian dust in the solar wavelengths. J. Geophys. Res., 102, 90399050, doi:10.1029/96JE03991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrosyan, A., and et al. , 2011: The Martian atmospheric boundary layer. Rev. Geophys., 49, RG3005, doi:10.1029/2010RG000351.

  • Pickersgill, A. O., and G. E. Hunt, 1982: A comparison of observed lee-waves on Earth and Mars. Weather, 37, 98108, doi:10.1002/j.1477-8696.1982.tb03571.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piqueux, S., S. Byrne, H. H. Kieffer, T. Titus, and C. J. Hansen, 2015: Enumeration of Mars years and seasons since the beginning of telescopic exploration. Icarus, 251, 332338, doi:10.1016/j.icarus.2014.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putzig, N. E., and M. T. Mellon, 2007: Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191, 6894, doi:10.1016/j.icarus.2007.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putzig, N. E., M. T. Mellon, T. L. Heet, and J. G. Ward, 2009: MGS Mars TES derived thermal inertia maps v1.0, mgs-m-tes-5-timap-v1.0. NASA Planetary Data System Geosciences Node, accessed 1 November 2016. [Available online at http://pds-geosciences.wustl.edu/mgs/mgs-m-tes-5-timap-v1/mgst_9001/data/global_ti_day_2007.img.]

  • Rafkin, S. C. R., 2009: A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms. J. Geophys. Res., 114, E01009, doi:10.1029/2008JE003217.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., S. R. Lewis, and D. P. Mulholland, 2015: The physics of Martian weather and climate: A review. Rep. Prog. Phys., 78, 125901, doi:10.1088/0034-4885/78/12/125901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruff, S., 2016: TES dust cover index. Arizona State University, accessed 1 November 2016. [Available online at http://www.mars.asu.edu/~ruff/DCI/dci_lo_ice_dust_16ppd_shifted.vicar.]

  • Ruff, S., and P. R. Christensen, 2002: Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res., 107, 2-12-22, doi:10.1029/2001JE001580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., R. W. Arritt, and J. E. Tillman, 1997: On the potential impact of daytime surface sensible heat flux on the dissipation of Martian cold air outbreaks. J. Atmos. Sci., 54, 15441549, doi:10.1175/1520-0469(1997)054<1544:OTPIOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. E., and et al. , 2001: Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 23 68923 772, doi:10.1029/2000JE001364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. E., G. Neumann, R. E. Arvidson, E. A. Guinness, and S. Slavney, 2003: Mars Global Surveyor laser altimeter mission experiment gridded data record: MGS-M-MOLA-5-MEGDR-L3-V1.0. NASA Planetary Data System, accessed 1 November 2016. [Available online at http://pds-geosciences.wustl.edu/mgs/mgs-m-mola-5-megdr-l3-v1/mgsl_300x/meg016/megt90n000eb.img.]

  • Smith, M. D., 2004: Interannual variability in TES observations of Mars during 1999–2003. Icarus, 167, 148165, doi:10.1016/j.icarus.2003.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. D., 2009: THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus, 202, 444452, doi:10.1016/j.icarus.2009.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiga, A., J. Faure, J. B. Madeleine, A. Määttänen, and F. Forget, 2013: Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res., 118, 746767, doi:10.1002/jgre.20046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strausberg, M. J., H. Wang, M. I. Richardson, S. P. Ewald, and A. D. Toigo, 2005: Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res. Planets, 110, E02006, doi:10.1029/2004JE002361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., G. A. Neumann, J. B. Abshire, and M. T. Zuber, 2006: Mars 1064 nm spectral radiance measurements determined from the receiver noise response of the Mars Orbiter Laser Altimeter. Appl. Opt., 45, 39603971, doi:10.1364/AO.45.003960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szwast, M. A., M. I. Richardson, and A. R. Vasavada, 2006: Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. J. Geophys. Res., 111, E11008, doi:10.1029/2005JE002485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillman, J. E., and N. C. Johnson, 1997: Viking Lander 2 binned and splined data. Arizona State University, accessed 17 November 2016. [Available online at http://www-k12.atmos.washington.edu/k12/mars/data/vl2/.]

  • Wang, H., 2007: Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor. Icarus, 189, 325343, doi:10.1016/j.icarus.2007.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2016: Mars Daily Global Map Archive. Harvard-Smithsonian Center for Astrophysics, accessed 17 November 2016. [Available online at https://www.cfa.harvard.edu/~hwang/mdgm/; MARCI imagery available at https://www.cfa.harvard.edu/~hwang/mdgm/marci.]

  • Wang, H., and M. I. Richardson, 2015: The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus, 251, 112127, doi:10.1016/j.icarus.2013.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. D. Toigo, and M. I. Richardson, 2011: Curvilinear features in the southern hemisphere observed by Mars Global Surveyor Mars Orbiter Camera. Icarus, 215, 242252, doi:10.1016/j.icarus.2011.06.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., 1997: A general circulation model of the Martian polar warming. Geophys. Res. Lett., 24, 123126, doi:10.1029/96GL03814.

  • Wilson, R. J., D. Banfield, B. J. Conrath, and M. D. Smith, 2002: Traveling waves in the northern hemisphere of Mars. Geophys. Res. Lett., 29, 29-129-4, doi:10.1029/2002GL014866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Helmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971001, doi:10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 35
PDF Downloads 32 32 18

Textured Dust Storm Activity in Northeast Amazonis–Southwest Arcadia, Mars: Phenomenology and Dynamical Interpretation

View More View Less
  • 1 Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

Dust storms are Mars’s most notable meteorological phenomenon, but many aspects of their structure and dynamics remain mysterious. The cloud-top appearance of dust storms in visible imagery varies on a continuum between diffuse/hazy and textured. Textured storms contain cellular structure and/or banding, which is thought to indicate active lifting within the storm. Some textured dust storms may contain the deep convection that generates the detached dust layers observed high in Mars’s atmosphere. This study focuses on textured local dust storms in a limited area within Northeast (NE) Amazonis and Southwest (SW) Arcadia Planitiae (25°–40°N, 155°–165°W) using collocated observations by instruments on board the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) satellites. In northern fall and winter, this area frequently experiences dust storms with a previously unreported ruffled texture that resembles wide, mixed-layer rolls in Earth’s atmosphere, a resemblance that is supported by high-resolution active sounding and passive radiometry in both the near- and thermal infrared. These storms are mostly confined within the atmospheric boundary layer and are rarely sources of detached dust layers. The climatology and structure of these storms are thus consistent with an underlying driver of cold-air-advection events related to the passage of strong baroclinic waves. While the properties of the studied region may be ideal for detecting these structures and processes, the dynamics here are likely relevant to dust storm activity elsewhere on Mars.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. G. Heavens, nicholas.heavens@hamptonu.edu

Abstract

Dust storms are Mars’s most notable meteorological phenomenon, but many aspects of their structure and dynamics remain mysterious. The cloud-top appearance of dust storms in visible imagery varies on a continuum between diffuse/hazy and textured. Textured storms contain cellular structure and/or banding, which is thought to indicate active lifting within the storm. Some textured dust storms may contain the deep convection that generates the detached dust layers observed high in Mars’s atmosphere. This study focuses on textured local dust storms in a limited area within Northeast (NE) Amazonis and Southwest (SW) Arcadia Planitiae (25°–40°N, 155°–165°W) using collocated observations by instruments on board the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) satellites. In northern fall and winter, this area frequently experiences dust storms with a previously unreported ruffled texture that resembles wide, mixed-layer rolls in Earth’s atmosphere, a resemblance that is supported by high-resolution active sounding and passive radiometry in both the near- and thermal infrared. These storms are mostly confined within the atmospheric boundary layer and are rarely sources of detached dust layers. The climatology and structure of these storms are thus consistent with an underlying driver of cold-air-advection events related to the passage of strong baroclinic waves. While the properties of the studied region may be ideal for detecting these structures and processes, the dynamics here are likely relevant to dust storm activity elsewhere on Mars.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. G. Heavens, nicholas.heavens@hamptonu.edu
Save